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Abstract

3D model deformation has been an active research topic in geometric processing. Due
to its efficiency, linear blend skinning (LBS) and its follow-up methods are widely
used in practical applications as an efficient method for deforming vector images, ge-
ometric models and animated characters. LBS needs to determine the control handles
and specify their influence weights, which requires expertise and is time-consuming.
Further studies have proposed a method for efficiently calculating bounded biharmonic
weights of given control handles which reduces user effort and produces smooth de-
formation results. The algorithm defines a high-order shape-aware smoothness func-
tion which tends to produce smooth deformation results, but fails to generate locally
rigid deformations. To address this, we propose a novel data-driven approach to pro-
ducing improved weights for handles that makes full use of available 3D model data
by optimizing an energy consisting of data-driven, rigidity and sparsity terms, while
maintaining its advantage of allowing handles of various forms. We further devise
an efficient iterative optimization scheme. Through contrast experiments, it clearly
shows that linear blend skinning based on our optimized weights better reflects the de-
formation characteristics of the model, leading to more accurate deformation results,
outperforming existing methods. The method also retains real-time performance even
with a large number of deformation examples. Our ablation experiments also show that

each energy term is essential.
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1. Introduction

With the rapid development of virtual reality and 3D printing technologies, the
demand for 3D models in industry is ever increasing. Traditional methods for geomet-
ric modeling require users to have the expertise in using specialized software such as
Autodesk Maya. However, this increases the cost of acquiring 3D models and lim-
its the users who can effectively manipulate 3D models to suit their needs. This is
particularly critical for virtual reality systems where real-time performance is essen-
tial. Meanwhile, 3D models are getting increasingly available as professional artists
continue to create models or obtain models by 3D scanning. It is therefore useful to
generate new models by reusing existing ones. Because of this, 3D model deformation
plays a vital role in games, animations, films and virtual reality. Rapid deformation
methods which produce realistic results are highly demanded.

Quite recently, Jacobson et al. [1]] proposed bounded biharmonic weights, which
when coupled with the linear blend skinning (LBS) algorithm [2]], are able to deform
3D models without the need of manual weight specification. The method derives
weights by optimizing a high-order shape-aware energy without exploiting example
shapes, and so cannot capture full deformation behavior of the object. The weights
sometimes result in objects that appear too soft, especially for those objects that are
locally rigid.

In this paper, we propose a novel weight optimization method that automatically
produces suitable weights for LBS handles by exploiting example deformations. To
better preserve local shapes, our method utilizes an as-rigid-as-possible (ARAP) energy
term [3]] to optimize the weights. We further propose to incorporate a data-driven en-
ergy term that optimizes the weights according to the example deformed shapes in the
dataset. Finally, to improve deformation results for near piecewise rigid deformation,
a sparse regularization term is introduced to limit the control range of the weights. The

final energy involves the data-driven, sparse regularization and ARAP energy terms.
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We further develop an efficient optimization strategy with the weights initialized using
biharmonic weights [1]. As we will show later by extensive experiments, our method
produces weights that can better deform the target objects than state-of-the-art meth-
ods, while maintaining the benefits of LBS-based deformation, i.e. allowing handles of
various forms (e.g. points, bones) and real-time performance even with a large number

of example shapes.

2. Related Work

2.1. Geometry-based Mesh Deformation

Mesh deformation has been an active topic in computer graphics research. Ideally,
visually reasonable deformation is performed on the mesh with the guidance of user in-
put, often in the form of transformation or rotation of the handle points. For a 3D model
in hinge structure like a human body, skeleton-based methods can be used for deforma-
tion. The deformed skeletons are used to drive mesh deformation. However, this does
not apply to general 3D models. For a general 3D model, a typical method is based on
local differential coordinates, which can be used to maintain the geometrical details of
the model and reconstruct the deformed 3D model under the boundary conditions speci-
fied by the user. Typical work includes deformation based on Laplacian coordinates [4]],
the gradient domain method based on Poisson equation [5] and method based on dual
Laplacian coordinates [6]. In order to maintain the consistency of the model volume
during the deformation, methods [[7, 8] introduce optimization terms that keep the vol-
ume constant during the reconstruction process using Laplacian coordinates. This type
of differential coordinate based methods requires the user to specify the spatial coordi-
nates and rotation transformation of the control vertex regions. To simplify user input,
Sorkine et al. [3]] estimate the differential coordinates of the rigid transformation it-
eratively in a framework that optimizes an as-rigid-as-possible (ARAP) energy. With
this method, the user only needs to specify the deformed coordinates of the control
points. The work [9] extends the original ARAP formula by introducing the anisotropy
directly into the deformation energy. However, given the same input which has a large

deformation space, it is difficult for non-data-driven mesh deformation methods with
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no prior knowledge to reasonably distribute the distortion during model deformation,
and the deformation results may not follow the behavior of the target objects.

Another approach to driving mesh deformation is through assigning control weights
for mesh regions w.r.t. each handle, and using methods such as linear blend skinning
(LBS) [2]] to propagate handle movement to mesh vertices. This method is very effi-
cient, and therefore suitable for real-time deformation. It supports a variety of different
handle forms, such as control points, bones, etc. However, it requires not only spec-
ifying handles, but also their weights on vertices, which is tedious. To address this,
Jacobson et al. [1] propose an automatic approach to determining weights by opti-
mizing a high-order shape-aware energy, namely bounded biharmonic. The method
is essentially heuristic and may produce unnatural deformation results especially for
piecewise rigid objects as they appear too soft. Later work [10] allows the user to
specify some constraints with the remaining constraints automatically derived by mini-
mizing an ARAP energy. To cope with shapes that have complex deformation behavior,
either a large number of constraints are required, or the method may not produce the
desired results. Recent work [[11] also combines the ARAP energy with the LBS al-
gorithm to find suitable skinning weights. However, their method is only suited for
skeleton handles. Moreover, LBS suffers from joint collapse. Recently, Bai et al. [[12]
proposed a volumetric skinning method using a set of meta-balls to solve this problem,

while our method uses data-driven optimization to avoid this kind of artifacts.

2.2. Data-driven Mesh Deformation

For the deformation of 3D models, the aim is to obtain realistic deformation re-
sults. As the deformation behavior of objects can be complicated, learning this from
the model dataset can help obtain desired results more effectively. Sumner et al. [[13]]
first proposed a method based on global principal component analysis (PCA), which
can analyze the model dataset and extract the main components of the model deforma-
tion. However, the user manipulation is often local when editing the model, but the use
of the global principal components causes other unedited places to also be deformed,
which violates the user’s editing intention. To solve this problem, Neumann et al. [14]

proposed a method that uses local PCA to exact principal components of local defor-
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mations for models in the dataset, but the work is based on the Euclidean coordinates
so cannot handle large rotations. Huang et al. [15] replaced the coordinate representa-
tion with the deformation gradient representation which better handles large rotations.
Frohlich et al. [16] use rotation-invariant quantities for data-driven mesh editing, but
they use rotation invariants such as edge lengths and dihedral angles of the mesh, so
their work cannot handle extrapolation and requires solving a large-scale linear system
of equations with varying coefficients. Gao et al. [L7] proposed a data-driven model
editing method based on rotational invariants, but this method still uses the global prin-
cipal components, so it is difficult to perform local editing. Moreover, the method uses
numerical methods to calculate derivatives required for optimizing the deformation en-
ergy, which is inefficient, especially when there is a large number of example shapes.
Tan et al. [18] proposed a graph convolutional neural network to extract localized defor-
mation components. By utilizing the as-consistent-as-possible representation [[19], the
method handles large rotations robustly. However, such methods still cannot cope with
different types of handles. In skin deformation, Murai et al. [20] combine simulation-
based and data-driven approaches, where simulation helps obtain realistic results for
a wide variety of motions, and the new data can be used to adapt the model to dif-
ferent body types. Our method also exploits example shapes, and use them to help
derive optimized weights for LBS. Le et al. [21]] proposed a data-driven method to au-
tomatically generate LBS weights based on the skeleton. Their method is restricted to
skeleton handles, whereas our method copes with general handles, including control

points, skeleton bones and their combination.

2.3. Mesh Deformation using Sparsity

Sparsity has been widely used in various mesh deformation methods. Xu et al. [22]
present a review about a few representative examples of how the interaction between
sparsity-based methods and geometric processing can enrich both fields. Gao et al. [23]]
introduce general [, norms to shape deformation, and show that different p values in-
fluence the distribution of unavoidable distortions. Deng et al. [24]] introduce an [; »
sparse regularization penalty into their framework to explore local deformation. Le et

al. [25] introduce Smooth Skinning Decomposition with Rigid Bones (SSDR) in order
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to solve the inverse problem of the LBS framework. With the sparseness constraint on

the weight map, SSDR can be used for traditional skinning decomposition tasks.

3. Energy Formulation

3.1. Preliminary

Our goal is to define smooth deformations for 2D or 3D shapes by blending affine
transformations at arbitrary handles. Let  C R? or R? be the volumetric domain
enclosed by the union of the given shape S and cage controls (if any). We denote the
handles by H; C Q,j = 1,...,ny, where ny, is the total number of handles. A handle
can be a single point, a region, a skeleton bone or a vertex of a cage. The user defines
an affine transformation T'; for each handle I, and all points p € (2 are deformed by

their weighted combinations:

2

’ Pi
p, = Y wi;T; ; ey
j=1 1

where p; and p; are the vertex coordinates before and after deformation, T is the
affine matrix of handle H;, and w;; is the weight of handle H; on vertex .

To calculate the weights in the LBS algorithm, Jacobson et al. [[1]] proposed bounded
biharmonic weights. They define the weight vector w; of the j th handle (consisting of
its weights on all vertices) as the minimizer of a higher-order shape-aware smoothness

functional, namely, the Laplacian energy, with some constraints.

1
arg min 5/ HAWJ»HZdV )
w;,j=1,....,np Q
subject to:

Wil = 050 )

np
> wi(p)=1,¥peQ )

j=1
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01 is the Kronecker function. The bounded biharmonic weights have some competitive
properties, including smoothness, non-negativity, shape-awareness, partition of unity,
locality and sparsity, and no local maximum. Please refer to [[L] for details.

The Laplacian energy Eq. [2]is discretized using the standard linear FEM Laplacian
M 'L where M is the lumped mass matrix (with Voronoi area/volume M; of vertex
v; on each diagonal entry ¢) and L is the symmetric stiffness matrix. After discretizing

the continuous integral term, we have

nhp 1 nhp 1 B B

S5 [ A Pav = 3 M L) MM L)

= Tlnh ©)
=3 > w; (LM L)w;

j=1

Through discretization, it is possible to convert an integral form which is difficult to
solve into a quadratic form which is easy to compute. The above constraints Eqgs. 3]
are all linear equations or inequalities w.r.t. w;. Once we have the matrices M and
L from the mesh representation of the 3D model, we can transform the problem into
solving quadratic minima under linear constraints.

In this paper, we develop a novel data-driven approach to weight optimization.
We therefore assume a set of deformed shapes with the same topology is given, and

optimize weights for LBS according to the given handles.

3.2. ARAP Energy

To better evaluate the local shape preservation of the deformation, following [10],
we minimize an as-rigid-as-possible (ARAP) energy [3]] Fqrqp with the deformed ver-
tex coordinates obtained from Eq. |l} To better capture piecewise rigid deformation,
reduce computation and avoid overfitting, we also partition the mesh into a set of re-
gions {G,}, g =1,2,...,|G| and |G| is the number of regions (viewed as edge groups).
For each region G, we assign a local rotation matrix R,. Then, the ARAP energy can

be written as:

Earap =Y Y i;]| (0} = P}) = Ry(pi — p))|” @

g (i,7)€G,
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where, w;; is the cotangent weight [26] defined as
. 1
Wi = i(COt Q5 + cot 51]) (8)

where a;; and 3;; are angles opposite to the edge (i, ) in adjacent triangles and R,
is the rotation matrix of the edge group G,. We similarly use k-means clustering on
the weight matrix W to obtain divided edge groups as W shows how much different

handles contribute to the deformation of every mesh vertex [10].

3.3. Data-driven Energy

Let Q be a deformed mesh. Ideally, the weights should allow accurate reconstruc-
tion of the given deformed mesh. We introduce a data-driven energy term that measures
the difference of the mesh obtained by the deformation and the known deformed mesh
Q in the dataset. We assume some example deformations are given, so the data-driven
energy will consider deviations of all the deformed meshes. For simplicity, we now de-
fine the energy for a deformed mesh Q. Let q; be the vertex coordinates of the known
deformed mesh Q, and denote by p) the vertex coordinates of the deformed mesh ob-
tained by LBS deformation. n,, is the number of vertices on the mesh. The data-driven
energy w.r.t. Q is

np
Eairs =Y Ipi —ail’ ©)
i=1
3.4. Sparsity Energy

With the ARAP and data-driven energy terms above, the learned weights allow
the example shapes to be reconstructed. However, the effective control range of each
handle may still be beyond what it should be. This is particularly problematic for
piecewise rigid deformation as a handle may have effect on vertices that should be
controlled by an adjacent handle. To address this, we introduce a sparsity term that
promotes the change of weights to be located sparsely. More specifically, we define the

sparsity term with the Laplace matrix L

nh
Esparse = ) |Lw;|- (10)
j=1
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The Laplace matrix captures the relationships between adjacent vertices, and the [;
norm promotes sparse distribution. This helps make the effective range of each handle
in control and avoid propagating handle deformation to regions which should not be

affected.

3.5. Overall Energy

Given a reference model (the initial model before deformation), and a collection of
m deformed shapes, our overall energy combines the three energy terms Eq.[7} Eq.[9]
and Eq. [10{ over all the m shapes. For the k' deformed shape, the overall energy is
defined as

Ej, Edsz +ME ‘;paree + >‘2Earap

T h

"(k k
B DY SCICI RN it an
- s
2
oy Yyl —p, )~ R (pi - py)
9 (4,5)€G,

where A; and )\, are the relative weights that balance the three energy terms, and (*)
indicates the k' deformed shape. We sum Eq. |1 1/ for each model in the dataset to get

our final target energy term Flo1q;:

Brotar = Y, Ek. (12)
k=1

4. Algorithmic Solution

We now present the algorithmic solution of our approach, including working out

weights and producing deformed meshes following handle movement.

4.1. Weight Optimization

Given a model dataset with more than one model with the same topology, select
a model in the dataset as the reference model (the initial model before deformation),
and select the handles (e.g. control point) on the reference model. Our aim is to find

LBS weights that optimize FE,,,; in Eq. [_1;2} As Ey 141 18 related to different unknown
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variables, directly optimizing it is difficult. We therefore take an iterative approach
that optimizes one set of variables at a time. To start this process, we use bounded
biharmonic weights in Eq. [2]to initialize the weights for given handles. We obtain the
weight vector w; as a column to form a weight matrix W, which is convenient for
further calculations. W is an n, x n; matrix, and w;; is the weight value of the 4th

th yertex.

handle on the ¢

Observing the energy Eq. we notice that p;(k) and p;(k) can be represented by
Eq.[I] The whole energy can be regarded as a function w.r.t. the weights, the affine ma-
trices { T§-k)} and the rotation matrices {ng)}. In the interactive deformation process,
the affine matrices {Tgk)} are obtained through user interaction, but during weight op-
timization, the affine matrices are not known in advance and need to be optimized. We
alternately optimize the following: Given the weights W initialized with the bounded
biharmonic weights, which means that for a given set of rigid transformations {Rék) I3
we look for a set of affine transformation matrices {T;k)} that minimizes F;,¢q;. Then,
based on the weights and the obtained {T;k)}, we minimize F,,,; to obtain the rigid
transformations {ng)}. Finally, based on the newly obtained {T§k)} and {Rék)},
we optimize the weights by minimizing F,.;,;. By repeating this iterative process,
the weights can be continually optimized until Fy,; falls below a given threshold or
reaches a minimum. We now give each step in detail.

Computing {T§k)}. Since we have iterative steps, we can initialize all {Rék)} to
unit matrices. For different models in the dataset, the affine transformation matrices
{Tgk)} and the rotation matrices {Rf]k)} are different and should be optimized sep-
arately. For simplicity of description, we consider the deformation energy E}, for a
single model and omit the notation k. Let us first consider the partial derivative of Ej,
w.r.t. p}, and the remaining terms are derived from the ARAP energy term and the

data-driven term:

(9Ek 6Ediff 8Em»a
= A P 13
op} op; e op;] (1
Consider
8Eara
op! £=0 (14)

10
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9p; (4
From Eq.[T4] we can get a linear equation
Z Wi (p; — Pj) = Z w;jRy(Pi — Py) (16)
(i,5)€G, (i,5)€G,

It can then be simplified as:

Lp' =b an
T

where L is the Laplace matrix with edge weights, and p’ = [p;, Pl J contains

the deformed coordinates to be calculated. To minimize Fy, let %’g % = 0, combining

the linear equations obtained by Eq. [I3] with Eq.[I7] we can get

oL A2b
e = (18)
I q
Taking Eq. [I]into account, we then obtain:
Zj wlj(p{a 1)T;“F
(T T
XL |22 wzj(I.)zal)Tj _|deb (19)
I q
Zj Wn,,j (p;z;v ]-)TJT_
We can get the least squares solution of {T;}. We further rewrite Eq.|19|as:
SKT =b’ (20)
AL . ) : ) .
where S = , K is a sparse matrix of size n, x 4nj, T is the transposed matrix
I

of {T;} of size 4n;, x 3. Then we reshape the matrix T and transform it into a column
vector. From Eq. we can directly obtain the least squares solution of {T'; }.
Computing {Rék)}. Obtaining the affine matrices {T;k)} completes the first step
of the weight optimization process. The second step is to calculate the rotation matrices
{ng)} by minimizing E},.,; based on the known weights and the obtained affine
transformation matrices {T;k)}. Again, we consider Ej to simplify the problem. It

can be found that in the E}, expression in Eq.[T1] only the ARAP energy term E,;.qy is

11
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related to {R }, and the other terms are constant when given known weights and affine
transformation matrices {T, }.

We briefly describe the derivation for the optimal rotation R, for a fixed shape
pair S, 8’ (before and after deformation). For convenience, let us denote the edge

€;j := p; — P;, and similarly egj for the deformed edge S’. From [[10]], we have

R, = argmaxTr(R, Z ﬁ)ijeijei?) 21
(i,4)€94
Denote by S, the covariance matrix
- T T

Sy = Z wijeije;; =P Dy(P))". (22)

(4,5)€9,
The matrix D,, is a diagonal matrix containing the edge weights w;;, P; is a 3 x |G|
matrix containing e;;’s as its columns, and similarly for P;. The rotation matrix R,
maximizing Tr(R4S,) is obtained when RS, is symmetric positive semi-definite.

R, is derived from the singular value decomposition of S, = U,%, V[
R, =V,U] (23)

If det(R4) <0, it is necessary to change the sign of the column in the matrix S, corre-
sponding to minimum singular value of the matrix, so that det(R,)>0.

Optimizing Weights. The final step in optimization is the most important step,
which will directly derive the optimized weights we need. Since the weights are the
same in each I, we consider the total energy E;otq;. The ARAP energy term Fypqp

and the data-driven term Eg; sy can be converted to the following according to the

12
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derivation of Eqgs. [I7)and T8}

SO Ip = dfl? + X2 lLp* = b?)
k=1 i=1
- 2
m L] L [AebF
= p — i
k=1 I q

o 2 (24)

M-

X

Il

—
-

Q

Zj wnpj(pg;pv 1)T§T

Substituting the above equation into Eyq;’s expression, Eq.[12] gives the following:

m 2
Etotal = Z()‘l Z |LWJ|+

k=1 j=1
5, w0, DTAT 2 o)
XL | X, we(ps, )T AbF
1 : - q* )
> wn,i(Ph )T

FEi o141 above involves both [; and s norms, but it is still a convex optimization problem.
We can efficiently solve it using CVX [27, 28] as the sparse solver to calculate the
weights for all handles simultaneously.

In practice, we apply the above three steps iteratively: After determining any two
of the weight matrix W, the affine transformation matrices {T;k)}, and the rotation
matrices {Rék) }, the remaining one is solved, until the total energy term Ey,,; reaches

a minimum or below a given threshold. The entire workflow is shown in Fig. [T}

4.2. Weight Guided Model Deformation

After having the optimized weights, the deformed shape can be obtained using
Eq. [T} However, this requires specifying affine transformations for handles. This can

be achieved with appropriate user interface. Alternatively, we develop an approach

13
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Figure 1: The entire optimization framework for weights.

which derives affine transformations using handle coordinates. To achieve this, we
follow the method of weight optimization to obtain the affine matrices by optimizing
the deformation energy. Ignoring the sparse regularization term which is irrelevant to
the affine transformation matrices and the data-driven term only used for optimization,

this only leaves the ARAP term to obtain the affine transformation matrices:

- ’ !’ 2
Etransfer = Ea'rap = Z Z wl]”(pz - pj) - Rg(pi - pj)H (26)
9 (4,7)€G,

The steps for optimizing the above equation are similar to the procedure of optimizing
the weights. The only difference is that the weights are already determined, so only the
affine matrices {T;} and the rotation matrices {R,} need to be optimized.

On the basis of Eq.[26] we also need to add some model constraints to the entire

optimization process, such as the coordinates of the handles given by user interactions:

p,=c,leD 27)

where D denotes the set of the control points in the vertex set. They are determined
by the stationary points and control points selected by users. Adding these constraints
to Eq. 26 only needs to assign O to the corresponding row and column of the Laplace
matrix L, and update the vector on the right hand side of the equation with c;. The

same changes are required when calculating the rotation matrices {R,}. We can ob-

14
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tain the affine matrices after several iterations of optimization. Combined with the
optimized weights, the model can then be deformed by the linear blend skinning algo-
rithm. Different from the weight optimization, when the optimized affine matrices are
obtained from Eq. [26] except that the SVD decomposition of the rotation matrix {R,}
is nonlinear, the rest of the operations are linear, so the deformation can be achieved
in real-time. It should be emphasized that the method for obtaining the handle coor-
dinates and then solving the affine matrices is only a convenient way, and specifying

affine transformations directly is still more general.

5. Experimental Results and Discussions

In this section, we compare our optimized weights with the original bounded bi-
harmonic weights and several state-of-the-art deformation methods [16]], [17]], [10], (3]

and [13]. Finally, we prove the necessity of each term in our energy function.

5.1. Comparison Experiments

We use various datasets to compare the LBS algorithm using our optimized weights
with that using the original bounded biharmonic weights, and with [[L0]. These datasets
are Card, Horse [29]], Face, Pants [30], Hand, and SCAPE [31]. During comparison,
we use the algorithm described in Sec.[d.2]

Fig. a) shows a card model with 2,500 vertices and 4,802 triangular faces. We
choose the two midpoints of opposite sides of the card as two control points. The
bounded biharmonic weights of these two control points are calculated using Eq. [2]
which are shown in Fig.[3(a). We only visualize the weights w.r.t. one control point, as
the weights w.r.t. the other control point are symmetric.

The weight is large in the red area, and small in blue area (see Fig. [3[c) for the color
bar). It can be seen that the bounded biharmonic weights are centered on the control
point and gradually decrease towards the surrounding, showing good continuity and
smoothness. As expected, this weight distribution leads to a very soft deformation
result with the bounded biharmonic weights (see Fig.[#{(a)). This is not natural, and in

particular different from the given deformation example in Fig. 2[b) which shows the

15
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(a) Original {b) Known Model

Figure 2: Card models. (a) is the source Card model with two control points located in the middle of a pair

of opposite sides. (b) is the example shape used in our optimization.

-

(a) Jacobson et al. 2011 (b) Our (©)
Figure 3: Visualization of the weights on the Card model. (a) is the bounded biharmonic weights and (b) is

—_

weights

=

our optimized weights. (c) shows the color bar. We only show the weights of one control point due to the

symmetry distribution of the weights.

| o =

(a) Jacobson et al. 2011 (b) Our

Figure 4: Card deformation comparison.
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card should be piecewise rigid. We use this model and the original model to optimize
the weights, as shown in Fig. [3{b). Compared with Fig. [3(a), our optimized weights
are near 1 for half of the card close to the control point and near O for the remaining
half of the card away from the control point. The weights near the folding line of
the card drop from 1 to O rapidly. We can conclude that the card is (almost) divided
into two parts, where each part is controlled by the respective control point. Fig. @[b)
shows the deformation result using our optimized weights. It is obvious that our result
is consistent with expectation. By further adjusting the position of the control points,
our method can easily produce the deformed card with different folding angles.

As mentioned in the previous section, clustering contributes to the optimization of
weights, and the weights also determine the results of clustering. Fig. 5] shows the
result of clustering, which clearly corresponds to the symmetric weight distribution of

the two control points.

Figure 5: Clustering result on the Card model.

We also compare our weights with the bounded biharmonic weights [1]] on Pants
and Hand. In the Pants experiment, we use a pair of “kicking” pants as an example,
while in the Hand experiment, we use six examples to optimize the weights. The
deformation results are shown in Figs. [6] and [7] It can be seen from Fig. [f] that our
weights can well handle rigid deformation and from Fig. [7] that our weights produce
more plausible results due to the data-driven term in our total energy.

We then compare our method with [10]. We take Face, Horse [29] and SCAPE
as test cases. We use multiple examples (larger than 10) in these cases. Fig. [§[a) shows
a face model with four control points, two of which are at the upper eyelids. The

bounded biharmonic weights of the control point on the left eyelid are visualized in

17
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Figure 6: Deformation result comparison with [1] on the Pants model.

(a) Original

(¢) Our

Figure 7: Deformation result comparison with [1]] on the Hand model. It is obvious that our result is more

smooth.
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(a) Original {(b) One of Known Models
Figure 8: Face models. (a) is the source face model with four control points, and (b) is an example shape

used in our optimization.
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{a) Jacobson et al. 2011 (b) Our (c)

Figure 9: Weight visualization of the Face model. (a) is the bounded biharmonic weight result and (b) is our

optimized weight result. (c) shows the color bar.

Fig.[9(a). It can be seen that the bounded biharmonic weights still exhibit continuous,
smooth characteristics, but the control area distribution of all control points is rela-
tively uniform, especially the control area of the control points on the eyelids greatly
exceeds the range of the eyelids which means that if someone drags the control points
on the eyelids, it will cause a large part of the surrounding face to deform, resulting in
unnatural deformation. For our method several face models from the dataset are used
to optimize the weights, and one of which has closed eyes, as shown in Fig.[§[b). The
optimized weights are shown in Fig. [9(b). The area where the weight is non-zero is
limited to the eyelid part.

We experiment with an open source interactive deformation platform introduced
in [10] and compare with the method in [10]. Deformation result comparisons are
shown in Fig. Our result shows a very natural closed eye, where the result of [10]
pulls part of the face around the eye.

In order to understand the optimization process more clearly, we visualize the
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Figure 10: Face deformation comparison. Our result shows a very natural closed eye, which is better than

the result of [10] which obviously pulls part of the face around the eye.

(a) 5 iterations {b) 10 iterations

{¢) 15 iterations {d) 20 iterations

Figure 11: Weights change during the optimization on the Face model.

weights every five iterations in the optimization process, as shown in Fig.[TT] From this
series of figures, we can see that the weights gradually converge from the concentric
distribution of the original bounded biharmonic weights until the red area representing
the larger weights gradually shrinks to the area of the upper eyelid, while the weights
in other areas are almost changed to 0.

To demonstrate the effect with more control points, we select nine control points on
the face model, and the deformation result is shown in Fig. Since the entire facial
expression space cannot be modeled by skinning weights only, some expressions are
hard to obtain even by using a large number of control points.

In addition, we use the Horse model and test the combination of two types of
handles: control points and skeleton bones. We use control points to control horsetail

and skeleton to control the body of the horse. The results are shown in Fig.[T3] In the
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(a) Original (b) Deformed Shape

Figure 12: Face model with more control points. (a) is the original face model with nine control points, (b)

is the deformed shape.

(a) Original f H

Figure 13: Weight visualization and deformation results on the Horse model [29]. The horsetail in the result

(¢) Our

of [10] has obvious distortion and unnatural bending, while in our result it is more natural and smooth, which
gives a feeling that the horse is swinging the tail. The red rectangles show that in the result of [10], the joint

between the tail and the body has some artifacts and the abdomen has abnormal contraction.
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(b) Jacobson et al. 2012 (¢) Our
Figure 14: Deformation result comparison with on the SCAPE model [31]. It can be seen that our

method can well handle the deformation around the skeleton joint due to the data-driven term.

first pair of comparison, the horsetail in the result of [10] has obvious distortion and
unnatural bending, while in our result it is more natural and smooth, giving us a feeling
that the horse is swinging its tail. In the second pair of comparison, we use the skeleton
to deform the horse body. It can be seen from the weight visualization that the bounded
biharmonic weights of the leg have some redundant parts on abdomen and back of the
body, which influence the abdomen to contract. Also, the joint between the tail and the
body has some artifacts.

Our method is flexible with handle forms, and we can also optimize weights on
skeleton handles. We use the SCAPE [31]] model to compare deformation results.
Fig. [[4] shows the comparison results using skeleton handles. It can be seen that our
weights can well handle the deformation around skeleton joints.

We further compare our method with another data-driven deformation method [13].
We use Hand and Pants models to illustrate the superiority of our method. In the
comparison, the models used for our weight optimization and the models as the basis
for are the same. The results of comparison are shown in Figs. [T5]and [T6 which
demonstrate that the method generates results with undesired distortions whereas

our results look natural.
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(a) Original  (b) Sumner et al. 2005 (¢) Our
Figure 15: Deformation result comparison on the Hand model with where the result of has elon-

gated fingers, while our method produces a normal result.

na4a

(a) Original (b) Sumner et al. 2005 (¢) Our

Figure 16: Deformation result comparison on the Pants model with [13]. Our result shows a good “kicking”

motion while shows a distorted result.

We also compare with data-driven methods [16] and [17] on the SCAPE [31] model
based on control points (as these methods can only take control points as handles).
When compared to [16], we randomly select five examples, whereas for [17]], 40 ex-

a0 amples are randomly selected. We use the same models to optimize weights when
compared with [16] and [17] respectively. The deformation comparisons are shown in

Figs.[T7)and[T8] Our method avoids the artifacts of alternative methods.

(a) Original (b) Frohlich and Bostch (¢) Our
Figure 17: Deformation result comparison on the SCAPE [31] model with [16]. There are some artifacts on

the human hand in the result of [16].
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(a) Original (b) Gao et al. 2016 (¢) Our
Figure 18: Deformation result comparison on the SCAPE [31]] model with [T7]. We only move the control

points on the right leg, and there are some extra motions like the flipped hand in [I7] while our result only

has the deformation of the right leg as expected.

(a) Original (b) Sorkine et al. 2007 {¢) Our
Figure 19: Deformation result comparison on the Pants model with ARAP [3]. The result of [3] has blended

pants legs, while our result has the correct squat posture.

Finally, we compare our method with ARAP deformation [3]]. Our method has the
data-driven term, which gives the deformation more information to produce desired
results. The results are shown in Fig.[T9]

Our method is very efficient, achieving real-time performance. We compare the
online deformation time with data-driven methods [[17]], and on the SCAPE
model [31]]. The results are shown in Fig. Our method only involves matrix mul-
tiplications and SVD decomposition which cost little time and due to the offline op-
timization, the time of our deformation method does not increase as the number of
examples increases, while the time of other data-driven methods are affected by the
number of examples (components) used, and may not maintain real-time performance

when a large number of examples (components) are involved.
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Figure 20: Deformation time comparison on SCAPE model with [17], [30] and [13]].
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(a) Choose ||[Lw]||, (b) Without Eq.10 (c) Without Eq.7 (d) Without Eq.9 (e) Total Energy

o

Figure 21: Validation of each energy term. It is obvious that each energy term is needed.

5.2. Ablation study

In order to verify that the energy terms we mentioned in Sec. [3|can play their role,
we conduct an ablation study. We take the face model as an example, and the selection
of control points is the same as Fig. [§]

To verify the role of the [; norm used in the sparsity term, we design two experi-
ments, namely removing the /; norm sparsity term and replacing the /; norm with the
l> norm. Fig. 21fa) shows the result of replacing it with the /> norm. The effect of
the /3 norm tends to be averaged, and it is not sparse, which is contrary to our needs.
The weight distribution in Fig. 21[b) is the result of optimization after removing the I;
norm sparsity regularization. When E},.,; no longer has a significant decrease trend,
the weight distribution of the control point still covers a larger area than it should be.
From these, we can clearly confirm that the [, norm sparsity term has played an impor-
tant role in the optimization process.

The data-driven term provides essential guidance for the optimization to capture
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(2) Separate (b) Simultancous

Figure 22: Comparison between sparsification performed simultaneously with optimization (b) and spar-
sification performed separately from optimization (a). Simultaneous optimization in our method is more

effective.

Weights | Separate | Simultaneous
<0.1 834 2408
< 0.05 432 1958

Table 1: Comparison of sparsity between two optimization strategies, namely sparsification performed sep-
arately from optimization and sparsification performed simultaneously with optimization, measured by the
number of vertices with small (near-zero) weights. It can be seen that simultaneous optimization has better

sparsification effects.

the object deformation behavior. Fig. [2Tc) shows the result of removing the data-
driven term. Lacking the guidance of the data-driven term, the optimization simply
makes FEi,q; smaller, without following the deformation behavior. Fig. @d) shows
the weight distribution of the experiment that removes the ARAP term for optimization,
which again fails to produce desired weight distribution, as shown in Fig. 2T|e).

Through these sets of experiments, we confirm that the three energy terms that
make up the total energy F,.,; are all necessary and indispensable, and their role is
consistent with the previous description.

Moreover, our sparsification and optimization are performed simultaneously. We
compare this with an alternative strategy similar to [[L1] where sparsification is per-
formed separately from the optimization. Fig. 22] shows the visual comparison and
statical comparison is presented in Table [T} Our simultaneous sparsification and opti-

mization strategy leads to significantly better sparsification effects.
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5.3. Limitations

Our method has some limitations. When control points are used for deformation,
since their control range is limited, they are not particularly suited to large-scale defor-
mations. Instead, control points are more suitable for fine-tuning on small scales, such
as facial expressions, muscle stretching, etc. For large-scale motions, one still needs
skeletons to achieve better results. Another limitation is for complex models with a
large number of vertices, the speed of offline optimization of weights can be slow, and
the memory usage is high. We plan to further improve the efficiency in the offline

processing. Nevertheless, in the online stage, our method remains efficient.

6. Conclusion

In this paper, we introduce a data-driven approach to optimizing weights for linear
blend skinning deformation. By introducing our new data-driven and sparsity regular-
ization terms, the deformation weights effectively follow the deformation behavior of
given examples, leading to more natural deformation results and avoiding unintuitive
global effects. Our online computation is very efficient, and keeps running times con-
stant with arbitrary number of examples. Our method can also be used with different

forms of handles.
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