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Abstract

Shape deformation is one of the fundamental techniques in geometric processing. One
principle of deformation is to preserve the geometric details while distributing the nec-
essary distortions uniformly. To achieve this, state-of-the-art techniques deform shapes
in a locally as-rigid-as-possible (ARAP) manner. Existing ARAP deformation meth-
ods optimize rigid transformations in the 1-ring neighborhoods and maintain the con-
sistency between adjacent pairs of rigid transformations by single overlapping edges.
In this paper, we make one step further and propose to use larger local neighborhoods
to enhance the consistency of adjacent rigid transformations. This is helpful to keep
the geometric details better and distribute the distortions more uniformly. Moreover,
the size of the expanded local neighborhoods provides an intuitive parameter to adjust
physical stiffness. The larger the neighborhood is, the more rigid the material is. Based
on these, we propose a novel rigidity controllable mesh deformation method where
shape rigidity can be flexibly adjusted. The size of the local neighborhoods can be
learned from datasets of deforming objects automatically or specified by the user, and
may vary over the surface to simulate shapes composed of mixed materials. Various
examples are provided to demonstrate the effectiveness of our method.

Keywords: shape deformation, rigidity, neighborhood, geometric modeling, as rigid
as possible

1. Introduction

Shape deformation is a fundamental research area in computer graphics. For char-
acter animation, skeleton based methods are widely used [[1}2]. Such methods however
need the users to take extra effort to build the skeletons. Alternatively, some deforma-
tion methods [3| 4] take cages (simplified geometry enclosing the deforming shapes)
as proxies to deform the shapes. Again efforts are needed to build cages.

Compared with skeleton and cage based deformation methods, surface based de-
formation methods are more intuitive and more flexible to model a variety of shapes,
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Figure 1: The single overlapping edge of two adjacent 1-ring vertex neighborhoods.

with no need to cope with extra proxies. Laplacian deformation methods [5 16, [7, 8]
have been explored extensively for surface based deformation. The difference between
the Laplacian coordinates of the deformed and the original shapes is minimized to keep
the local geometric details. However, both the positional and rotational constraints for
the deformation handles are required for these methods to work. As shown in [9], posi-
tional and rotational constraints need to be assigned compatibly to avoid artifacts. This
is non-trivial and requires additional effort/expertise from the user.

Another general approach to keep geometric details is to deform shapes locally
rigidly, just as rotating and translating shapes globally rigidly would not change their
geometry. This principle is modeled as an As-Rigid-As-Possible (ARAP) energy which
has been widely used in geometric processing. Based on this energy, Sorkine et al. [[10]]
present a mesh deformation method. Only positional constraints need to be specified
at deformation handles. The local rotation of the deformed surface can be estimated
automatically during the iterative optimization. This makes interactive modeling much
easier and substantially reduces the effort of modeling tasks. The ARAP deformation
effectively preserves geometric features and distributes distortions uniformly, which
leads to more visually pleasing deformation results than previous methods. The ARAP
deformation formulation has also been integrated into various applications in geome-
try processing. The ARAP deformation method has recently been improved for effi-
ciency [11] and effectiveness [12].

The mechanism of the traditional ARAP deformation [10]] is to keep geometric
features by deforming the shape locally rigidly. To distribute distortions uniformly over
surfaces, local transformation consistency is enforced based on 1-ring neighborhoods
of vertices. As shown in Figure[I] the 1-ring neighborhoods of adjacent vertices share
a single edge, so the consistency constraint of neighboring rigid transformations is
relatively weak. As a result, ARAP deformation results behave as if they are made of
soft plastic material.

In this paper, we further explore the ARAP energy. Our key observation is that
expanding local neighborhoods will enlarge overlapping areas between adjacent ver-
tices which helps to enhance the coherence of local rigid transformations. As a result,
the size of local neighborhoods provides a feasible way to control the appearance of
deformation. The larger the size is, the better the local geometric details would be
kept, or in other words, the material will look more rigid. By varying this param-
eter, the appearance of deformation ranges from softer plastic material with smaller



local neighborhoods to harder material such as iron. The former is elastic and flexible,
whereas the latter is more rigid and harder to bend/stretch. Another advantage of such
enhanced rigid transformation consistency is it reduces the variability of local rigid
transformations, and hence the optimization will converge with fewer iterations.

Real-world objects are often composed of different materials. Our approach allows
such situations to be well simulated by varying the neighborhood sizes across the ob-
jects to indicate desired stiffness. Shapes with different local neighborhood sizes can
be effectively optimized in a unified framework.

The contributions of this work are summarized as follows:

e We propose a rigidity controllable deformation method by using ARAP defor-
mation with adjustable neighborhood sizes. By using a local neighborhood size
suitable to the material, our method produces more natural deformation than
state-of-the-art methods.

e Our unified framework allows varying local neighborhood sizes across the sur-
face, simulating objects made of materials with different stiffness. Realistic de-
formation results are obtained for such cases.

e In addition to user specified neighborhood sizes, we also develop an automatic
method to set neighborhood sizes by analyzing a collection of deforming objects,
such that the neighborhood sizes are adapted to local stiffness.

We review the most related work in Section 2] The detailed algorithm is described
in Section [3] Results and discussions are presented in Section [ Finally, limitations
and future work are given in Section 3]

2. Related Work

Shape deformation is an active research area in computer graphics with a large
amount of related research work. For complete and detailed surveys please refer
to [113, 114, [15]. In this section, we review the work most related to ours. In order
to simulate realistic shape deformation, the pioneer research work [[16}17] deforms the
shapes according to the physical laws. These physically based methods however are
computationally intensive and the parameters derived from physical rules cannot be
adjusted intuitively.

To generate visually pleasing deformation results, geometric details should be pre-
served after the shape is deformed. One typical approach is to preserve the Laplacian
differential coordinates [3l 16, [7, 18] during the shape deformation. These differential
coordinates based methods need the user to specify compatible positional and rota-
tional constraints for deformation handles. As shown in [[18]], incompatible constraints
will introduce artifacts. Popa et al. [19] deform the shape with different material prop-
erties based on the deformation gradient method. Again, rotational constraints of the
deformation handles should be assigned. Our method allows materials with different
stiffness to be simulated, while only requiring positional constraints at handles which
makes the modeling procedure much easier. For human body deformations, Murai et
al. [20] propose a sophisticated mathematical model to learn parameters for simulating



deformation dynamics of soft human tissues. Compared with this work, our work uses
a simpler model and can deal with general shapes.

Another approach to preserving geometric details is to keep deformation rigidly.
Global rigid transformation while being distortion free is not suitable when non-rigid
deformation is involved. Deforming shapes locally rigidly keeps geometric details and
makes less distortion. This concept has been modeled as the As-Rigid-As-Possible
(ARAP) deformation energy, which has been widely used in geometric modeling, such
as shape interpolation [21} 22] and 2D shape manipulation [23]. Sorkine et al. [[10]
propose a 3D mesh deformation method by using this ARAP technique. This state-
of-the-art work often deforms shapes with visually pleasing results. Optimizing the
ARAP energy in the L; norm instead of the traditional Ly norm tends to distribute
the distortions sparsely to fewer places thus keep geometric features better for most
areas [24]]. Zohar et al. [[12]] augment the ARAP energy with a rotation difference term
to improve smoothness of relative rigid rotations (SR-ARAP). Gao et al. [25] blend
several reference shapes with the ARAP energy for data-driven morphing. The ARAP
based shape optimization framework has also been used for shape registration [26] and
parametrization [27]. Chao et al. [28] present a continuous ARAP energy formula-
tion. Based on optimizing ARAP energy in the 2-ring neighborhood, Gao et al. [29]
propose an approach to data-driven shape deformation. For animation of articulated
shape characters, the ARAP energy is integrated into the linear skinning deformation
method [30]. The ARAP energy has also been applied to dynamic shape reconstruc-
tion [31,132]. Yang et al. [33]] consider adjusting deformation stiffness using different
neighborhood sizes. Their method however is based on voxels, which suffers from
high computational costs when the grid is dense, or is unable to represent deformations
at fine scales if the grid is coarse. Our method works directly on meshes which also
avoids the need of converting between meshes and voxels. We also propose a method to
automatically learn adaptive neighborhood sizes. Recent progress has also been made
to speed up the ARAP deformation with GPU acceleration [11] and the subspace tech-
nique [34] for interactive editing. In this paper, we focus on improving the deformation
effectiveness.

3. Algorithm

Similar to traditional ARAP deformation, we assume that an input model is pro-
vided with a set of handles. The user then moves the handles to desired locations and
the algorithm produces a deformed model which satisfies the handle constraints and
keeps geometric details. The fundamental spirit of the ARAP deformation is to de-
form shapes locally rigidly. The traditional ARAP approach interprets the local area
as 1-ring neighborhoods. Adjacent 1-ring neighborhoods share a single common edge.
This edge constrains the consistency or smoothness of rigid rotations between adjacent
transformations. Instead of using 1-ring neighborhoods, we propose to use general
r-ring neighborhoods to define local areas, to allow adjustable stiffness.

3.1. r-ring ARAP energy
Let N(k,r) be the set of vertices and associated edges within the r-ring neighbor-
hood of vertex k, where a vertex j € N (k, r) if and only if there exists a path connect-
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Figure 2: (a) the 1-ring neighborhood edges of the center vertex, (b) the 2-ring neighborhood edges of the
center vertex.

ing vertices k and j with the number of edges no more than r. An edge (¢,j) € N(k,r)
if it can be visited by a path containing up to 7 edges from the vertex k. Figure[2]illus-
trates 1-ring and 2-ring neighborhoods respectively with edges leading to these vertices
highlighted. The vertex and edge set N (k,r) is obtained efficiently using breadth-first
search from each vertex k. The r-ring energy is defined as follows:

E.(p,R) =) > wilpi—p) ~Rei—py)lIPp, (D)

k=1 \ (i,5)eN(k,r)

where n is the number of vertices, p; is the vertex position in the input shape, p; is the
vertex position after deformation, and R; is the rigid rotation to be optimized in each
r-ring neighborhood. p’ = {p}} and R = {R;} represent the deformed positions and
local rotation matrices for all the vertices.

When r = 1, this energy formulation is equivalent to the standard ARAP deforma-
tion [10]. wj;; is the cotangent weight which helps to make the energy insensitive to
surface discretization [35]] and is defined as:

1
w;; = §(cot a5 + cot Bi;5), ()

where «;; and 3;; are two angles opposite to the edge (7, j).

3.2. Optimization Framework

Given the input model and the handle positions after deformation, we optimize the
local rotation matrix R; and the deformed position p; for each vertex ¢ iteratively. To
make this tractable, two alternating steps are applied in each iteration. In the global
step, given the rigid rotations R;, we optimize the vertex positions p;, and in the local
step, we optimize the rigid rotations R,; with the vertex positions p; fixed. To begin



with, the rigid rotation for each r-ring neighborhood is initialized with the identity
matrix. We now give details for the global and local steps in the following subsections.

3.2.1. Global Step
Given the optimized rigid rotations R;, the r-ring ARAP energy becomes a quadratic
function w.r.t. the deformed positions. The optimal position for p, can thus be obtained

by solving the linear system Zﬁf =0:

8 r ’ ’
aE’ = Z Z 2w ((Pi - p;) — Ri(pi — Pj))
Pi FEN(i,1) \k:(i,j)EN (k,r)
D 2w ((P;' -p;) - Ry(p; - pi)) : 3)

s:(j,i)EN(s,7)

where {k|(¢,j) € N(k,r)} is the vertex set containing all the vertices whose 7-ring

neighborhood covers the edge (7, j). Since w;; = wj;, g—]s}‘ can be rewritten as

> 2wy | 2diy(p—p) - Y. Rilpi—p) |, “)
JEN(i,1) k:(4,9)EN (k,r)
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where d;; is the number of elements in {k|(4, j) € N(k,r)}. The linear system
0 is defined as

2d;; Z wij (p; — P;) = Z Wi Z Ry (p: — pj) ®)

JEN(i,1) JEN(i,1) k:(i,5) €N (k,r)

This induces a linear system Ap/ = b. During deformation, assuming H is the
set of handle vertices with user specified positional constraints. For vertex ¢ € H, the
specified handle position is c;. This is equivalent to having a hard constraint p; =c;.
For each i € H, the corresponding i*" row and i*" column of A will be set to zero
except for the diagonal element where A (i,i) = 1. The i*" row of b is set to c;.

A is purely determined by the input model and the set of handle vertices, so it is a
fixed matrix during interactive deformation. Since A is symmetric and semi-definite,
we apply Cholesky decomposition to A in advance and the linear system can be effi-
ciently solved to obtain vertex positions p/ by back substitution during the optimiza-
tion step. Both the Cholesky decomposition and back substitution are implemented by
MATLAB which has been optimized for parallel computing.

3.2.2. Local Step

Given the optimized vertex positions p/, in the local step, the rigid rotation R, for
each vertex i is optimized as follows. Let S; = 3 ; 1) n(i.r) Wk (Pr—P;) (P —P;) 7
Similar to [10], the optimal rotation can be obtained explicitly. We first apply singular
value decomposition (SVD) to S;, giving S; = U,;%; VL. The optimized rigid rotation



R can be obtained as V,;U;” . The sign of U; corresponding to the smallest singular
value should be changed when necessary to make det R; > 0. The rigid rotation
optimization is independent for each r-ring neighborhood, so this optimization can be
straightforwardly accelerated in parallel by OpenMP.

3.2.3. Convergence Condition

In each global/local step, the energy E),. is monotonically decreasing, so the opti-
mization always converges to some local minima. With different r, the value of the
optimized energy is also different. To set a consistent termination condition, we nor-
malize the energy difference between the (¢ — l)t][1 iteration and the ¢*" iteration with
the energy of the (¢ — l)th iteration. The optimization is terminated if the following

condition is satisfied:
Egt—l) B Eﬁt)

Egt—l)

For all the examples in this paper, the parameter + is chosen as 1073,

3.3. Spatially Varying Rigidity

Real-world objects are often composed of different materials with different stift-
ness. Our approach allows such objects to be simulated within a unified framework
by using the r-ring ARAP formulation with different r values specified for different
regions. The resulting energy with varying r can be optimized using the same frame-
work as described in Section [3.2.Tand Section[3.2.2] We further developed an intuitive
graphical user interface application to help users specify different neighborhood sizes
for different regions. It provides a variety of tools. The user can select the current 7,
and use a paintbrush tool to assign 7 to surface regions by directly painting on the sur-
face. Alternatively, the user may select a region and use a flood fill (paint bucket) tool
to assign 7 to the whole selected region. A simple example is shown in Figure [§] The
bar is made with two different materials with the softer part rendered in orange and the
harder part in gray. As shown in the results, enlarging r increases rigidity.

3.4. Learning Spatially Varying r from Deforming Shapes

Instead of specifying r by manual painting, when a set of deforming shapes is avail-
able, we propose an automatic method to assign suitable spatially varying r across the
surface. Intuitively, larger r leads to more rigid deformation, and thus tends to preserve
details better. However, when 7 is set to be too large, the shape can be locally too rigid,
and thus results in a large deformation error, which can be efficiently estimated using
the As-Rigid-As-Possible energy.

Assume for each vertex k, we set the neighborhood size 7 to an integer in the
range of [Tmin, "max]- We further assume that M/ models are available, and the position
of the i'"" vertex on the m'" model is denoted as p*. We take the first model as the
reference model, and for an arbitrary model m (m = 2,3,..., M), we can work out
the r-ring ARAP energy for vertex k as follows:



E(k,rm) = Y wyl(®f —p)") — Ra(pi —p))?
(i) €N (k,r)

We normalize the energy E'(k, r,m) to make it scale invariant :

~ 1
E(k =——F(k
( 7r7 m) A(k,r) ( ’T’ m)
where A(k,r) is the sum of the Voronoi areas of all the vertices in N (k,r) on the
reference model. ~
To measure the overall deformation for the k'" vertex, we take the mean F(k, r, m)
as ARAP energy for vertex k with r-ring neighborhood:

1 _
EARAP(k,T):m Z E(k,?“,m)

2<m<M
To penalize locally non-rigid deformation, we favor larger r, and hence introduce

the non-rigid energy as:

Enonfrigid(k7 ’I") = Tmax — Tk

For each vertex k, the neighborhood size 7, is obtained by minimizing the energy
combining both terms:

TR = arg mrin (Earap(k,r) 4+ wEpon—rigia(k,r))

w is a globally adjustable parameter to control the preference of rigidity to deforma-
tion error. Thanks to the normalization, we find a default set of the parameters works
well for a wide range of shapes. We set ryin = 1, "max = 6 and w = 0.3 in all our
experiments.

4. Results and Discussions

In this section, we show various deformation results using our approach including a
single neighborhood size and mixed neighborhood sizes, and compare our results with
state-of-the-art deformation methods. The experiments were carried out on a computer
with an Intel i17-2600 CPU and 8GB RAM. We use yellow dots to indicate the defor-
mation handles.

Timing & Convergence. As discussed before, the energy of our deformation ap-
proach is monotonically decreasing so it always converges to some local minima. The
running time of our method includes the off-line step and the on-line step. The off-line
step involves the breadth first search (BFS) to obtain the r-ring neighborhood N (i, r)
for each vertex ¢, and the predecomposition of the sparse matrix A. These can be per-
formed independent of the handle positions and thus only need to be performed once
during the interactive deformation process. The online step mainly consists of the time
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Figure 3: Deformation results of different neighborhood sizes (). (a) the input shape, (b)(d)(f) the results
with 1-ring (equivalent to ARAP deformation [10]), 2-ring and 10-ring neighborhoods, (c)(e)(g) the color
coded energy distribution of (b)(d)(f).

Ring Number | BFS (ms) | Cholesky (ms) | Global (ms) | Local (ms) | #Iterations | Total Time (s)
1-ring 3.65 26.87 22.96 2.20 477 12.03
2-ring 8.91 26.65 24.57 5.45 201 6.06
4-ring 28.68 19.75 39.11 20.43 124 7.43
6-ring 63.47 19.02 69.21 45.95 63 7.34
10-ring 136.09 19.50 129.17 103.48 33 7.70

Table 1: Statistics of the deformation running times for the example in Figure@

for global and local optimization. The detailed running times for the deformation ex-
ample in Figure [3| are shown in Table[I] Note that when 1-ring neighborhood is used,
our method reverts to the standard ARAP deformation [[10]. The model involved con-
tains 1154 vertices. For the same model with different neighborhood sizes r, the size of
the linear system is the same, which is equal to the number of vertices. As a result, the
running times of Cholesky decomposition, back substitution and SVD decomposition
are similar. The major differences are the times for using the BFS to build r-ring neigh-
borhoods, calculating the matrix S; in the local step and the vector b in the global step.
With the increasing neighborhood size r, the running times for BFS, local optimization
and global optimization are increasing while the time for Cholesky decomposition is
decreasing as shown in Table [T]

With increasing r, the material becomes more rigid. The consistency of adjacent
rigid rotations is enhanced so the flexility of rigid rotations is reduced. Thus fewer iter-
ations are needed to converge. Figure[dshows how the r-ring ARAP energy converges
over iterations for different neighborhood sizes. Figure 5] further shows the number of
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Figure 4: Energy convergence curves of the example in Figure@with (a) 1-ring, (b) 2-ring, (c) 10-ring.
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Figure 5: The number of iterations (y-axis) needed for convergence w.r.t. the neighbood size r (x-axis),
according to the same convergence condition.
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Figure 6: Deformation results of different neighborhood sizes. (a) the input shape, (b) 1-ring result, (c)
5-ring result, (d) 10-ring result, (e) 15-ring result, (f) 20-ring result.

iterations required for the energy to converge, based on the same convergence condi-
tion (Section [3.2.3). As it takes longer for each iteration and the number of iterations
reduces with increasing r, the running times are fairly consistent from 2-ring to 10-
ring. For the example in Figure [3| the running time is between 6s-7s, which is about
half of the time as traditional ARAP deformation (equivalent to setting » = 1). For
the human shape with 12.5K vertices shown in Figure[9] the online optimization takes
about 10.2s with mixed r-ring neighborhood sizes.

The running time for automatically learning neighborhood sizes from deforming
model dataset is mainly spent on calculating general ARAP energies with different
neighborhood sizes around each vertex, so is proportional to the vertex number of each
model, as well as the total number of models. The running time is about 0.68 ms per
vertex per model, to calculate energies from 1-ring to 6-ring neighborhoods. For the
human shape in Figure[9]with 12.5K vertices and 71 models, the one-off neighborhood
size selection algorithm takes about 10 minutes.

Results with global change of r. Figure [3demonstrates deformation results with
one end of the shape bent by 180°. The traditional ARAP deformation method (equiv-
alent to using 1-ring neighborhood) [10] produces self-intersection artifacts. With such

10
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Figure 7: Comparison of deformation results. (a) the input shape, (b) ARAP deformation result [T0], (c)
SR-ARAP deformation result [12], (d) deformation result of [36], (€) result of our approach with 6-ring
neighborhood.
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Figure 8: Deformation results of different neighborhood sizes. (a) the input shape, (b) mixed 3-ring and
2-ring, (c) mixed 4-ring and 2-ring, (d) mixed 6-ring and 2-ring.

large deformation, the distortions cannot be distributed sufficiently uniformly. With
larger neighborhood sizes, the rigid consistency is strengthened. The distortions are
propagated much more uniformly. We show the deformation results with 2-ring and
10-ring where no self-intersections are generated. To visualize how the energy varies
locally over the surfaces and to account for the difference in absolute energy values,
we show color coding of energy difference between adjacent r-ring neighborhoods.
It can be clearly seen that in the traditional 1-ring case, significant energy change is
concentrated on small regions, and the energy is distributed more uniformly with the
increasing neighborhood size.

Figure[6]shows the deformation results with the same user constraints but changing
neighborhood size r. The bar tends to become more rigid with increasing r. The
neighborhood sizes (1-ring, 5-ring, 10-ring and 15-ring) are chosen to demonstrate
typical controllable rigidity. The 1-ring deformation result looks like elastic plastic
material whereas the 15-ring deformation result looks more like metal. With a single
adjustable parameter, the user can change the material properties freely and intuitively.

We show further example with substantial deformation and compare our results
with state-of-the-art methods. The example is shown in Figure [/| where our method
produces a natural deformation result while state-of-the-art methods produce results
with artifacts, including self-intersections and over blended distortions. These exam-
ples demonstrate that by using a larger neighborhood size, our method can avoid defor-
mation artifacts typically appearing in existing methods which are induced by the local
minimum nature of optimization.

Results with spatially varying neighborhood size r. Our algorithm also allows

11
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Figure 9: Comparison of deformation results. (a) the input shape, (b) ARAP deformation result [10], (c)
SR-ARAP deformation result [12]], (d) deformation result of [36]], (¢) r-ring neighborhoods specified by the
user, (f) result of our approach with mixed 7-ring neighboorhoods.
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Figure 10: Deformation result comparisons. (a) the input shape, (b) deformation result of [36]], (c) result of
ARAP deformation [10]], (d) neighborhood sizes 7 painted by the user, (¢) deformation results with mixed
r-ring neighborhoods.

() (b) (©

®

(a) () (©

the user to specify the material properties by a paintbrush. As shown in Figure[8] the
thin bar is painted with two different neighborhood sizes. The smaller neighborhood
size r is specified for softer areas where more bending is allowed. With the increasing
r, the middle part of the bar tends to be more rigid.

In Figures [9} [I0] and [T1] the user specifies the rigidity of shape regions according
to the intrinsic properties. The joint area tends to be much more flexible for articulated
shape deformation. As shown in the results, the shape deformation results with mixed
r are much more natural than the previous state-of-the-art methods [[10], 12, 36]. As
highlighted in the yellow rectangles, deformation artifacts including self intersections,
excessive twisting and unnatural distortions occur in the deformation results of pre-
vious methods. In Figure [0} muscle contraction appears in the deformation results of

W 4ring
1 1-ring

() (b) (© (C)) (e) ®

Figure 11: Deformation result comparisons. (a) The input shape, (b) SR-ARAP deformation results [12], (c)
deformation result of [36], (d) ARAP deformation results [10],(e) neighborhood sizes r painted by the user,
(f) deformation results with mixed r-ring neighborhoods.
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Figure 12: Comparison of deformation with our automatic neighborhood size selection and alternative
methods. (a) color coding illustrating the neighborhood size (1-6 corresponding to blue to red), (b) SR-
ARAP deformation results [12]], (¢) deformation results of [36]], (d) ARAP deformation results [T0], (e) our
deformation results using the learned adaptive neighborhood size.

(a) () (© (d

Figure 13: Deformation result comparisons with neighborhood sizes automatically learned using (a-b) 7,
(c-d) 30 and (e-f) 71 examples from the SCAPE dataset. (a)(c)(e) color coding illustrating the neighborhood
size, (b)(d)(f) corresponding deformation results.

(e) ()

[10] which looks unrealistic. The bending areas of these method in the arm fail
to be located at elbow joints. The deformed human shape of our method is free of these
artifacts. In Figure the bent index finger of [10] looks like elastic plastic without
joints. The thumb of [36] is squashed. With guiding rigidity distribution, the defor-
mation result of our method looks much more natural. Similar unnatural distortions
of [10 also appear in Figure [T1}] Compared with these methods, our method
makes natural and reasonable deformations.

13
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Figure 14: Comparison of deformation using the horse model with our automatic neighborhood size se-
lection and alternative methods. (a) color coding illustrating the neighborhood size (1-6 corresponding to
blue to red), (b) SR-ARAP deformation results [12]], (c) deformation result of [36], (d) ARAP deformation
results [10], (e) our extended 3-ring ARAP deformation results, (f) our deformation results using the learned
adaptive neighborhood size.

Results with automatically selected neighborhood size . We now show the
results obtained using automatic neighborhood size selection, and compare them with
alternative methods. For this purpose, we need a collection of shapes with the same
connectivity, which many existing datasets satisfy (or can be achieved by consistent
remeshing).

In Figure [T2] we show results based on the SCAPE (Shape Completion and Ani-
mation of People) dataset [37]] of deforming human body. The automatically selected
neighborhood sizes using the whole dataset of 71 models are illustrated using color-
coding in Figure [[2{a). It effectively identifies the rigid parts (such as the head) and
regions which are locally non-rigid (such as joints) and assigns suitable neighborhood
sizes. We show three deformation examples with user-specified handles highlighted.
For all examples, results of our method (Figure [I2e)) with learned adaptive neigh-
borhood sizes preserve details for the rigid parts well while allowing non-rigid parts to
deform flexibly to produce natural deformation results. On the contrary, the three state-
of-the-art methods [12] do not preserve the rigid parts (e.g. legs) and produce
distortions around joints.

To test the influence of the model database on the results, we further use the first 7
and 30 models from the SCAPE dataset. The results are shown in Figure[I3] When the
number of examples is small (with only 7 models), it is not sufficient to capture all the
possible non-rigid deformations. As a result, the deformed right leg bones show clear
bending as the joint is not properly recognized. When 30 models are used for learning,
the neighborhood size distribution is very similar to using the full dataset, and the result
looks plausible.

Another example is shown in Figure[T4] using the horse dataset from [38]]. Existing
state-of-the-art methods [10} (12} have artifacts such as bent legs (c¢) and smoothed
out joints (b-d). Our method with a fixed neighborhood size of 3 (e) while better

14



preserves details than the traditional ARAP, still fails to preserve the shapes of hooves
well enough (as they should be more rigid) and somewhat smoothes out the joints
(as they should be more flexible). Our method with learned adaptive neighbourhood
produces results look natural without such artifacts.

5. Conclusions and Future Work

In this paper, we extend the ARAP deformation model from 1-ring neighborhoods
to general r-ring, which allows a series of natural deformation to be achieved, mim-
icking objects made up with different materials. We further consider using spatially
varying neighborhood sizes that adapt to the local rigidity, either specified manually
using an intuitive paintbrush interface, or learned automatically from a set of deform-
ing shapes. Such adaptive neighborhood sizes help to further improve flexibility and
allow more natural deformations to be achieved.

Our current implementation is purely CPU-based. Although with OpenMP-based
multithreading, it is sufficient for interactive deformation, it still cannot run in real time.
The algorithm can potentially be further optimized by GPGPU computing. The local
optimization of estimating the local rigid rotations R; and the global optimization of
solving the predecomposed equations can be parallelized by GPGPU.
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