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Effectively characterizing the behavior of deformable objects has wide ap-
plicability but remains challenging. We present a new rotation invariant
deformation representation and a novel reconstruction algorithm to accu-
rately reconstruct the positions and local rotations simultaneously. Meshes
can be very efficiently reconstructed from our representation by matrix pre-
decomposition, while at the same time, hard or soft constraints can be flex-
ibly specified with only positions of handles needed. Our approach is thus
particularly suitable for constrained deformations guided by examples, pro-
viding significant benefits over state-of-the-art methods. Based on this, we
further propose novel data-driven approaches to mesh deformation and non-
rigid registration of deformable objects. Both problems are formulated con-
sistently as finding an optimized model in the shape space that satisfies
boundary constraints, either specified by the user, or according to the scan.
By effectively exploiting the knowledge in the shape space, our method
produces realistic deformation results in real-time and produces high qual-
ity registrations from a template model to a single noisy scan captured using
a low-quality depth camera, outperforming state-of-the-art methods.
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1. INTRODUCTION

Effectively characterizing the behavior of deformable objects such
as human bodies, animals etc. has wide applicability in computer
graphics, ranging from mesh editing to animation. Previous re-
search often considers this in the settings of mesh deformation.
For articulated models such as human bodies, skeletons have been
widely used to allow control by artists. Mesh based deformation
is becoming popular due to its generality. Methods either work
directly on the mesh coordinates, or utilize coordinates such as
differential coordinates that are insensitive to certain rigid trans-
formations, hence better represent fundamental non-rigid deforma-
tions. Rotation sensitive coordinates such as Laplacian coordinates
or gradient domain representation [Sorkine et al. 2004; Yu et al.
2004; Au et al. 2006] do not propagate rotations directly and thus
require sophisticated heuristics and optimizations to improve re-
sults. To address this, existing works [Lipman et al. 2005; Kircher
and Garland 2008; Baran et al. 2009; Hasler et al. 2009] consider
rotation invariant representations. However, two-stage reconstruc-
tions are needed by these methods where the local frames are con-
structed in the first stage followed by recovery of vertex positions
in the second stage. As a result, such methods require not only po-
sitions but also compatible rotations to be specified at handles for
rotations to be properly reconstructed.

In this work, we present a new rotation-invariant mesh repre-
sentation that also encodes local deformation differences, similar
to [Baran et al. 2009]. Unlike [Baran et al. 2009], we propose
a novel surface reconstruction method based on our representa-
tion to solve for the vertex positions and local rotations at the
same time. The shape can be efficiently and accurately recovered,
by solving a non-linear yet efficient as-rigid-as-possible optimiza-
tion [Sorkine and Alexa 2007]. Our representation and reconstruc-
tion approaches allow flexible positional constraints to be speci-
fied without the need to specify rotations at handles. Moreover, the
matrix involved in our process is determined by the mesh connec-
tivity, which can be pre-decomposed. As a result, given our repre-
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sentation, reconstructing the mesh is very efficient, with real-time
performance achieved using multi-resolution optimization. These
fundamental advantages allow novel applications for surface mod-
eling, and we will in particular investigate mesh deformation and
non-rigid registration.

Geometry-based surface modeling methods are not aware of the
physical properties of the objects, thus the naturalness of manipu-
lation is limited. Efforts have been made to use physically based
approaches. However, such methods rely on careful modeling and
analysis of objects, which are only possible to some extent for
specific types of objects. Physically based modeling is also often
too expensive for interactive applications. With the proliferation of
models, data-driven methods have received a lot of attention. Nat-
ural manipulation results are learned from examples, for both de-
formation (e.g. [Sumner et al. 2005; Fröhlich and Botsch 2011])
and morphing (e.g. [Gao et al. 2013]). We propose a data-driven
approach to mesh deformation. As we will show later, our method
benefits from the unique characteristics of the representation and
the reconstruction method, and produces substantially better results
over state-of-the-art methods.

Shape registration aims to find appropriate transformations to
put multiple shapes (e.g. 3D scans) into alignment. Based purely
on the shapes to be registered, registration techniques typically re-
quire a good initialization to converge to the desired solutions, and
may often get stuck at a poor local minimum for incomplete, noisy
data. This is more challenging for non-rigid registration due to the
substantially larger solution space. Previous work considers data-
driven approaches by using a deformable model (e.g. [Schneider
and Eisert 2009]) and finding the optimal fitting of the deformable
model to the target scan. However, such techniques only work
for cases where deformation is relatively subtle and can be easily
blended, e.g. human faces or heads; these cases are also easier to
establish correspondence using closest points. We propose a data-
driven approach to more general non-rigid registration using the
deformation space as a prior.

In this paper, based on our rotation-invariant deformation repre-
sentation and shape reconstruction method, we propose novel data-
driven deformation and non-rigid registration algorithms. We treat
these two problems in a uniform optimization framework as find-
ing a suitable model in the shape space following constraints, ei-
ther specified as handle positions by the user for deformation or
as the target scan for registration. Example models in our repre-
sentation are used to provide a useful prior to constrain deforma-
tion and registration. Some results are shown in Fig. 1. By using
a collection of models as examples, our method produces realistic
deformation even with substantial movement of handles (a-c). For
non-rigid registration, we first obtain a complete template of the
deforming object using KinectFusion (d) and transfer the geometry
to a model collection. Given a new incomplete, single-view, noisy
and distorted depth scan obtained using a Kinect v2 camera (e), our
method successfully registers the template to the scan with the help
of example models (f). We will demonstrate that such deformation
and non-rigid registration are challenging for existing methods.

The main contributions of this paper are summarized as follows:

—We propose a novel shape reconstruction algorithm based on a
new rotation invariant representation that solves for vertex posi-
tions and local rotations simultaneously. Plausible deformations
in this representation often form a near linear subspace, which
allows standard dimensionality reduction and linear combina-
tion to be applied. Given our representation, the mesh can be
efficiently reconstructed, with flexible constraints.

—Based on this, we propose a novel data-driven mesh deforma-
tion method, which produces substantially improved results over
state of the art.

—We further propose a novel data-driven non-rigid registration
technique that produces high quality registrations from a tem-
plate model to a single noisy scan captured using a low-quality
depth camera, by exploiting knowledge in a model database.

We first review relevant work in Sec. 2. The representation and
its properties are discussed in Sec. 3. We introduce two novel data-
driven surface modeling techniques, namely mesh deformation and
non-rigid registration in Sec. 4. Experimental results and discus-
sions are provided in Sec. 5 and finally Sec. 6 concludes the paper.

2. RELATED WORK

Surface representation and surface based deformation. This is
an active research direction in recent decades. A large volume of
research work exists in the field. A complete survey is beyond the
scope of this paper. Please refer to [Botsch and Sorkine 2008; Gain
and Bechmann 2008] for excellent surveys. We focus on the tech-
niques most relevant to our work.

Many surface based deformation techniques benefit from some
suitable representations: results that better preserve local details are
obtained with coordinates that are invariant to certain rigid trans-
formations. Local differential coordinates are used to encode lo-
cal details and recover them after deformation. These methods in-
clude Laplacian coordinates [Sorkine et al. 2004], Poisson-based
gradient field reconstruction [Yu et al. 2004] and the iterative dual
Laplacian approach for improved results [Au et al. 2006]. While
differential (Laplacian) coordinates are translation invariant, they
are still sensitive to rotations. As a result, sophisticated heuristics
and optimizations are needed to cope with rotational deformations.
The volumetric graph Laplacian constructed in the adjacent space
of the surface is proposed to better preserve the volume under large
deformations [Zhou et al. 2005]. Huang et al. [2006] propose a
non-linear gradient domain approach that incorporates various con-
straints such as volume, skeleton and projection. A subspace tech-
nique is used for efficiently optimizing the non-linear energy first
on the coarse mesh and then interpolated over the original mesh.
Rotation invariant coefficients are employed in this work. Sumner
et al. [2005] use deformation gradients to represent shape defor-
mations. As deformation gradients are related to global orientation,
this approach cannot effectively blend multiple deformations when
they have different global orientations and may lead to artifacts.

Rotation invariant coordinates handle rotations effectively,
which is a highly desirable property. Lipman et al. [2005] pro-
pose a linear rotation invariant shape representation that defines
connection maps between adjacent frames. The connection maps
are not explicitly stored, so need to be recovered first. Although
the method only requires solving two linear systems, to obtain
good results an iterative approach is often needed. Kircher and Gar-
land [2008] propose a second-order representation to represent and
process free-form motions. Their representation defines connection
maps between adjacent frames explicitly, although the frames are
not orthogonal which may introduce global shear artifacts. To avoid
this, Baran et al. [2009] define connection maps between adjacent
orthonormal frames. A similar rotation invariant representation is
used in [Hasler et al. 2009] to encode human shapes and poses
for regression of semantic properties (e.g. height, weight). How-
ever, these methods have similar limitations that require rotations
to be reconstructed before vertex positions. To get good deforma-
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(a) (b) (c) (d) (e) (f )

Fig. 1. Data-driven deformation and non-rigid registration using our method. (a) input model with handles highlighted, (b)(c) results using our data-driven
deformation, (d) a template model of the target person obtained using KinectFusion, (e) a scanned point cloud of a single view captured using a Kinect v2, (f)
our non-rigid registration result.

tion results, compatible rotations at handles need to be specified, in
addition to positions, which increases user effort substantially.

Our representation and reconstruction methods are rotation in-
variant, but do not have such restrictions. Vertex positions and ro-
tations are optimized together; there is no need to specify rotations
at handles. Furthermore, our approach can cope with large-scale
deformations in a consistent manner, and is therefore more suit-
able for data-driven algorithms that may need to combine multiple
shapes with potentially large deformations.

Geometry-based mesh deformation is also formulated as an op-
timization problem. Terzopoulos et al. [1987] formulate a shell en-
ergy to measure the distortions between the input and the deformed
models. Sorkine and Alexa [2007] estimate the rigid transforma-
tions of local cells and collect the transformations to deform the
whole model. The principle of as-rigid-as-possible (ARAP) defor-
mation has also been applied to shape manipulation [Igarashi et al.
2005]. Such works based on the ARAP principle have a similar
framework. They all estimate local rigid transformations of geo-
metric elements (e.g. triangle faces), and then build a global energy
formulation based on the L2 norm. Zohar et al. [2015] propose
a smooth rotation (SR) enhanced ARAP-style method for shape
deformation and morphing. Freifield and Black [2012] define a
low-dimensional non-linear manifold with Lie group of deforma-
tions, mainly for human body shape representation. Their experi-
ments were restricted to human bodies with similar poses. Chao et
al. [2010] define a smooth deformation map minimizing the differ-
ence between the differential map and the rotation group. Its dis-
cretization leads to an ARAP energy. For surface cases with 1-ring
edge sets, it leads to a new continuous energy involving a parameter
radius r. However, the optimal choice of r is still an open problem.
The work also provides an interpolation method for linear blending
of shapes. However, the energy cannot be applied for extrapolation
because the minimization of the energy would become negative in-
finity. The method thus is not suitable for data-driven deformation
as extrapolation is essential.

Data-driven shape deformation. Purely geometry based ap-
proaches are limited in identifying suitable deformation given user
constraints. This is because the physical properties of the objects
cannot be fully captured by the geometry alone. Instead of using
expensive physically based modeling, data-driven approaches ex-
ploit existing examples to improve the naturalness of deformation.
Skeleton-based methods (e.g. [Feng et al. 2008]) learn the relation
between control points and different surface regions for improved
mesh skinning. Shi et al. [2008] propose a data-driven skinning
method for articulated models with volumetric effects learned from
example sequences. Such methods are restricted to articulated de-

formation, mainly for human bodies. Mesh-based inverse kinemat-
ics derived from example models are used to produce stylized sur-
face deformation [Sumner et al. 2005; Fröhlich and Botsch 2011].
Such methods however are generally restricted to a small number
of examples due to the high computational costs and also produce
suboptimal results with large deformations. As pointed out in pre-
vious work [Botsch and Sorkine 2008; Winkler et al. 2010], the
gradient based MeshIK method [Sumner et al. 2005] will lead to
problems which cannot blend rotations larger than 180◦. To address
this problem, Fröhlich and Botsch [2011] use edge length, dihedral
angles and volumes which are rotation-invariant to represent the
mesh. However, it is not suitable for extrapolation (i.e. deformation
beyond those in the examples), since this may need the edge length
to be negative which is not possible. Extrapolation is essential to
address challenging cases when a data-driven approach is used. Our
method works effectively in both interpolation and extrapolation.

A relevant active research area is example-based simulation.
Such methods typically require volumetric tetrahedral meshes as
input and use a small number of examples. Material properties also
need to be specified. The pioneering work by Martin et al. [2011]
proposes an example-based simulation method for objects of com-
plex elastic material. The deformation manifold is defined by shape
interpolation with a Finite Element Method (FEM) energy. The
method is physically realistic, although expensive to optimize. To
speed up the computation, Koyama et al. [2012] propose to de-
fine the manifold by simple linear interpolation, which runs in real-
time, although at the cost of losing some physical accuracy, espe-
cially when the behavior cannot be fully captured by the examples.
Schuma et al. [2012] extend [Martin et al. 2011] to improve effi-
ciency and provide flexible artistic control by combining incom-
patible linearly interpolated shapes with a compatible configura-
tion. An efficient physical solver is proposed [Bouaziz et al. 2014]
for real-time simulation with local/global optimization. Zhang et
al. [2015] propose a Green strain tensors based potential energy for
example-based elastic material with real-time efficiency. Compared
with these works, our approach does not require tetrahedral meshes
as input, and is able to cope with a large number of example mod-
els as well as situations where physical properties are complex or
unknown.

Example-based deformation has also been used for dynamic
sprite animation [Jones et al. 2015], where a drawing and exam-
ple poses are specified by artists, and the dynamics are achieved
by navigating in the pose manifold following specified forces. von
Tycowicz et al. [2015] consider the problem of non-linear interpo-
lation of shapes, and propose a very efficient real-time solution by
constructing the optimization problem in a low-dimensional sub-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2016.



4 • L. Gao et al.

space. Our approach focuses on data-driven deformation and non-
rigid registration, which has different input and/or output, com-
pared with these works.

Non-Rigid Registration. Registration is a technique of finding
appropriate transforms to put two or more shapes into alignment.
Please refer to [Tam et al. 2013] for a recent survey. Rigid regis-
tration assumes a global rigid-body transform, and is largely based
on Iterative Closest Point (ICP) [Besl and McKay 1992] or its vari-
ants [Pottmann et al. 2006]. However, a good initialization is re-
quired as such methods only converge to local minima. Non-rigid
registration is more flexible and better copes with deforming ob-
jects. Such techniques allow objects to be deformed as part of the
alignment. Li et al. [2008; 2009] non-rigidly register dynamic depth
scans using deforming templates. Such work depends on high qual-
ity depth scans as input. Bouaziz and Pauly [2013] survey non-
rigid registration work and provide a code implementation for low-
quality RGBD data (e.g. captured using a Kinect). Zollhöfer et
al. [2014] develop a combined software and hardware solution to
real-time non-rigid registration of a template to live RGBD data.
Such methods do not use additional data apart from the template
(i.e. a constructed static surface) for registration of general shapes.

Some works use data priors to help reconstruct shapes. For facial
reconstruction, works such as [Weise et al. 2011] blend shape mod-
els to fit the scans. Schneider and Eisert [2009] use a deformable
model to fit human heads. However, linear blending models used
by such methods cannot handle shapes with substantial rotations.
Anguelov et al. [2005] parameterize the space of human body and
pose deformation, and use marker based motion-captured data to
reconstruct human bodies. The pose deformation of this work is
defined on the articulated skeleton which is not suited for general
non-rigid registration or reconstruction. With this parameterized
model, Loper et al. [2014] capture the shape and motion of human
bodies from sparse markers. Alternative work uses a data-driven
approach to recover poses from a single depth camera [Wei et al.
2012]. Such techniques are only designed for human bodies and the
purpose is tracking rather than registration. Non-rigid registration
is the fundamental technique for both static [Li et al. 2013] and dy-
namic [Zhang et al. 2014] human body reconstruction. Our work
focuses on non-rigid registration of general shapes, although the
advances would also be beneficial to human body reconstruction.

In this paper, we propose a new rotation-invariant mesh differ-
ence representation and a novel surface reconstruction method to
effectively encode model deformations. Plausible deformations in
this representation often form a near linear subspace, which allows
standard dimensionality reduction and linear combination to be ap-
plied. Using this, we further propose novel data-driven approaches
to mesh deformation and non-rigid registration of a template model
to a single (often incomplete) scan of a deformed object captured
using a low-quality depth camera. Various examples demonstrate
that our method produces substantially improved results over state-
of-the-art methods.

3. DEFORMATION REPRESENTATION

Fundamental to this work is a new shape representation to en-
code the rotation-invariant local mesh differences between deform-
ing surfaces, and a novel reconstruction algorithm to efficiently
obtain deformed shapes from the representation. In this section,
we first introduce this representation, which involves two parts,
namely rigid rotation differences and local scaling/shear. We then
analyze the characteristics of this representation, including efficient
mesh reconstruction by matrix pre-decomposition, incorporating
constraints, and near linear subspaces formed by typical deforma-

tions. These provide the basis for novel algorithms for data-driven
deformation and non-rigid registration.

3.1 Representation Formulation

We assume that we have m models (m ≥ 2) consistently triangu-
lated, each with n vertices which are in one-to-one correspondence.
Without loss of generality we further assume that the first model is
the reference model and other models are deformed models. Let us
denote pi as the position of the ith vertex (denoted as vi) on the
reference model, and p′i as the position of vi on a deformed model.
The deformation gradient Ti in the 1-ring neighborhood of vi from
the reference model to the deformed model can be calculated by
minimizing the following energy:

E(Ti) =
∑
j∈Ni

cij‖e′ij −Tieij‖2, (1)

where Ni is the 1-ring neighbors of vertex vi, e′ij = p′i − p′j , and
eij = pi−pj . cij is the cotangent weight cij = cotαij + cotβij
which helps prevent mesh discretization bias [Sorkine and Alexa
2007; Levi and Gotsman 2015], where αij and βij are angles op-
posite to the edge connecting vi and vj . As we will show later in
Sec. 5.1, cotangent weights lead to reduced reconstruction errors,
in particular for meshes with poor triangulation. The affine trans-
formation matrix can be decomposed into a rotation part and a scal-
ing/shear part using polar decomposition Ti = RiSi.

We define the rotation difference dRij from vi to adjacent vertex
vj as follows:

dRij = Ri
TRj . (2)

The energy E(Ti) can be rewritten using rotation differences as:

E(Ti) =
∑
j∈Ni

cij
∑
t∈Ni

c̃i‖e′ij −RtdRtiSieij‖2, (3)

where c̃i = 1/|Ni|, |Ni| is the number of neighboring vertices
of vi. The scaling/shear transformations are rotation-invariant by
nature and can be interpolated directly. The rotation transforma-
tions in the rotation matrix space SO(3) are usually interpolated
by first mapping them to 3 × 3 skew-symmetric space so(3) us-
ing the matrix logarithm, linearly interpolating them in this space,
and finally mapping them back to SO(3) using the matrix expo-
nential [Murray et al. 1994; Alexa 2002]. Since ‖eX+Y − eX‖ ≤
‖Y‖·e‖X‖ ·e‖Y‖(∀X,Y), the exponential map is Lipschitz contin-
uous [Horn and Johnson 1986]. This means that if two matrices are
sufficiently close in so(3), they are also close in SO(3). To be rota-
tion invariant and allow effective linear combination, we combine
the logarithm of the rotation difference dRij of each edge (vi, vj)
and scaling/shear matrix Si of each vertex vi, to get the feature
representation f of the deformed model as follows:

f = {log dRij ; Si}(∀i, j ∈ Ni). (4)

As discussed, including log in this representation allows robust
linear interpolation and the rotation difference cancels out global
rotation and thus makes it rotation invariant. As we will show later
in Sec. 5.1, the representation is more effective than alternative rep-
resentations, in particular for linear extrapolation. In this paper, we
call this rotation-invariant mesh difference (abbreviated as RIMD)
representation.
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Fig. 2. Reconstruction energy over iterations for the bar example in
Fig. 14(top), with or without breadth-first search (BFS) based initialization.

3.2 Surface Reconstruction from RIMD
Representation

Given the initial pose p = {pj} where pj is the position of vertex
vj , and a RIMD representation f = {log dRij ; Si} of the defor-
mation, the reconstructed geometry can be obtained by finding new
positions p′ = {p′j} that minimize the following energy function:

E(p′) =
∑
i∈V

E(Ti)

=
∑
i∈V

∑
j∈Ni

c̃j
∑
k∈Nj

cjk‖e′jk −Ri dRij Sj ejk‖2, (5)

where ejk = pj −pk, e′jk = p′j −p′k, dRij = exp(log dRij) as
well as Sj is part of the RIMD representation, Ri is the (unknown)
rotation matrix at vertex vi, V is the set of the vertices, and c̃j =
1/|Nj |. This is equivalent to Eqn. 1 with the order of summation
changed.

Given a reference shape and the RIMD feature, to obtain the new
positions p′ as well as the per-vertex rotation matrix Ri, we alter-
nate the following two steps:

1/ (global step): Given Ri for each vertex, find the optimal posi-
tions p′. For each p′j , a linear equation is obtained:

∂E(p′)

∂p′j
=

∂

∂p′j

∑
i∈Nj

c̃j
∑
k∈Nj

cjk‖e′jk −Ri dRij Sj ejk‖2

+
∂

∂p′j

∑
k∈Nj

ckj
∑
s∈Nk

c̃k‖e′kj −Rs dRsk Sk ekj‖2 = 0.

Using ckj = cjk, this can be simplified to∑
k∈Nj

cjke′jk

=
1

2

∑
k∈Nj

cjk(c̃k
∑
s∈Nk

Rs dRsk Sk + c̃j
∑
i∈Nj

Ri dRij Sj )ejk.

Those terms involving two-ring neighbors can be efficiently calcu-
lated by accessing 1-ring neighbors of each vertex twice. In the first
pass, 1-ring neighbors are accessed to calculate

∑
i∈Nj

Ri dRij Sj

which are saved for use in the second pass. The resulting linear
system Ap′ = b has the matrix A fixed, irrespective of varying
Ri, so by using Cholesky factorization, the linear system can be
efficiently solved in each iteration.

2/ (local step): Given p′, find the optimal Ri. Let us denote
ejk = pj − pk and e′jk = p′j − p′k. Ri is separate so can be
individually optimized. Expand Eqn. 5 and ignore terms irrelevant
to Ri, so that the optimal Ri can be obtained as:

arg max
Ri

∑
j∈Ni

c̃j
∑
k∈Nj

cjke
′T
jkRidRij Sj ejk

= Tr(
∑
j∈Ni

c̃j
∑
k∈Nj

cjkRidRij Sj ejke
′T
jk)

= Tr

Ri

∑
j∈Ni

c̃jdRij Sj (
∑
k∈Nj

cjkejke
′T
jk)

 .

Let us denote Qi =
∑

j∈Ni
c̃jdRij Sj (

∑
k∈Nj

cjkejke
′T
jk).

This step can also be done by 1-ring neighbor transversal twice,
with

∑
k∈Nj

cjkejke
′T
jk calculated in the first pass. Using Singu-

lar Value Decomposition (SVD), Qi = UiΣiV
T
i . Then Ri can be

explicitly obtained as ViUi
T (choosing appropriate signs to make

det Ri > 0).
The iterative optimization terminates on convergence (i.e. when

the energy change |∆E| < ε, ε = 10−3 in our experiments). This
stopping criterion for iterations works well for all the examples in
our experiments. While more iterations can be applied, no visible
improvements can be seen in all these examples.

Initial values are needed for the optimization. A trivial initializa-
tion would set all the Ri to the identity matrix (so with no rota-
tion). Since we have rotation difference dRij between every pair
of adjacent vertices vi and vj , we can very efficiently obtain a
good initialization for Ri. We choose an arbitrary vertex and set
the initial rotation matrix to the identity matrix. We then propagate
the rotation matrix from this vertex to neighboring vertices using a
bread-first search (BFS) strategy. Assume vertex vi is visited and
its adjacent vertex vj is about to be visited, then Rj is initialized
as RidRij . If the RIMD representation is derived directly from a
deformed shape, BFS initialization recovers the shape directly, so
no iteration is needed and the reconstructed geometry recovers the
geometry exactly (apart from numerical errors). In case the RIMD
representation does not correspond to a deformed shape (e.g. by
blending multiple RIMD representations), the BFS based initializa-
tion helps to converge more quickly. For the example shapes with
large difference in Fig. 13 and reconstruction of their blending in
Fig. 14(top), as demonstrated in Fig. 2, with the BFS initializa-
tion, the energy converges within 4 iterations. Algorithm 1 gives
the pseudocode of major steps for surface reconstruction from the
RIMD representation.

Compared with traditional manipulation methods that rely on
differential coordinates over 1-ring neighbors [Sorkine and Alexa
2007], our representation exploits second-order representations that
rely on two-ring neighbors. It is rotation invariant and can be effec-
tively combined by a linear combination. This not only provides a
useful tool for shape space analysis, but also allows example defor-
mation information to be incorporated for data-driven deformation
and non-rigid registration, as will be demonstrated later.

Reconstruction with constraints. As we will show later, recon-
struction with constraints is essential for data-driven deformation
and registration.

For hard constraints, certain vertices (known as handles) p′i are
fixed to specified positions ti: p′i = ti, i ∈ H , where H is the
handle set containing all the vertices with positional constraints.
The elements in the ith row of matrix A are set to zeros except for
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(a) (b) (c) (d) (e)

Fig. 3. Shape blending with interpolation and extrapolation. (b) and (d) are the source (t = 0) and target (t = 1) models. (a),(c),(e) are interpo-
lated/extrapolated models with t = −0.5, 0.5, 1.5, respectively.

the diagonal element which is 1, bi = ti. With these changes, the
remaining optimization is the same as described.

Given a soft constraint that the position at handle h should be
close to vh, we introduce a new energy term λ‖nT

h (p′h − vh)‖2
to the energy formulation where λ is a weight for the soft con-
straint (the bigger it is the stronger the constraint will be), and
nh is the normal direction similar to point-to-plane distances such
that only deviations off the surface are penalized. The soft energy
term does not have a direct influence on the local rigid rotation
optimization step (step 2 above). For the step of optimizing po-
sitions given rotations (step 1 above), ∂

∂p′
h
λ‖nT

h (p′h − vh)‖2 =

2λ(nhnT
h p′h−nhnT

h vh), so λnhnT
h and λnhnT

h vh will be added
to the corresponding entries of A and b. The optimization can then
proceed as before.

Algorithm 1 Surface reconstruction from RIMD representation.
Input: Initial pose vertex positions p, RIMD feature f
Output: Deformed mesh vertex positions p′

Construction of matrix A and Cholesky pre-decomposition
Initialization of Ri using Breadth First Search
repeat

Global Step Optimization for p′

Local Step Optimization for Ri

until |∆E| < ε

3.3 Shape Blending

By using polar decomposition and the matrix loga-
rithm/exponential, our RIMD representation allows intuitive
shape blending by using linear weights:

f(w) =
∑
k

wk · fk, (6)

where fk = {log dRk,ij ; Sk,i} is the RIMD feature of the kth
model, wk is an arbitrary weight (not necessarily in the range of
[0, 1]). This is equivalent to blending rotation difference and scal-
ing/shear matrices as follows:

dRij(w) = exp(
∑
k

wk · log(dRk,ij)), (7)

Sj(w) =
∑
k

wk · Sk,j . (8)

(a) (b) (c) (d) (e) (f)

Fig. 4. A failure case of directly blending large rotations: self intersection
is caused by interpolation of substantially different poses. (a)(f) two shapes
to be blended, (b-e): blended shapes.

An example is shown in Fig. 3. Take the source (b) and target (d)
models which are spirals with three and five cycles respectively.
Because of the extensive rotations it is a challenging case for in-
terpolation. Our approach can effectively interpolate (c) as well as
extrapolate (a)(e) them by changing the parameter t, and realis-
tic results are obtained. In this example, the weights used for the
source and target models are t and 1− t respectively. Extrapolation
is essential for effective data-driven surface modeling, as knowl-
edge hidden in the given examples can be better utilized.

In theory, the linear blending of logarithm used here may in-
troduce errors when the rotations being blended are not coax-
ial [Bloom et al. 2004]. In practice, however, even for shapes with
very large rotations, the rotation differences between adjacent faces
are usually still small, and the error is often negligible, as shown in
examples throughout the paper. When very large rotations are to be
blended directly, self-intersection in space may be produced (see an
example in Fig. 4).

3.4 Deformation Space Analysis

Our feature vector gives an effective rotation-invariant representa-
tion of the deformations. To better understand the behavior of this
representation, given a set of deforming models, we use standard
Principal Component Analysis (PCA) of the feature vectors to re-
duce the dimensions to 2. An example is shown in Fig. 5. Given a
collection of spheres (a) from [Rustamov et al. 2013] with uniform
deformation distribution, Fig. 5(b) shows the distribution of coeffi-
cients on the two most significant principal axes. Results obtained
are very similar to map-based exploration [Rustamov et al. 2013]
although with a much simpler approach. This example shows that
for typical deformations, the resulting feature vectors tend to form
a low-dimensional near linear subspace.
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Fig. 5. PCA analysis of a collection of spheres with two modes of varia-
tion, using RIMD features. (a) a collection of spheres; (b) the value distri-
bution over the two most significant principal coordinates.

(a) (b) (c) (d) (e) (f)

Fig. 6. First three axis models for the ‘march2’ dataset from [Vlasic et al.
2008]. (a)(b) models on first axis, (c)(d) models on second axis, (e)(f) mod-
els on third axis.

Compact representation of deforming models. For datasets
with a large number of models, the essential variations may form
a much lower dimensional space. Applying PCA to such datasets
allows using the mean shape as well as the first few principal com-
ponents to represent all the major modes of variations compactly. A
similar idea has been widely used, but mainly for images or shapes
with limited amount of deformation (e.g. human faces). Thanks to
our RIMD representation, we show that this tool works effectively
for general deformed shape datasets. An example is given in Fig. 6,
using the ‘march2’ dataset from [Vlasic et al. 2008] containing 250
captured human bodies of a marching sequence. The first 4 princi-
pal components capture over 70% of the energy (variances) and the
first 18 principal components capture over 90% of the energy. The
first three modes are shown, with models corresponding to maxi-
mum/minimum values. Instead of using the whole dataset for data-
driven deformation/registration, we instead represent the unknown
RIMD feature f(w) as a linear combination of basis vectors:

f(w) = f̄0 +
∑
s

ws · f̄s, (9)

where f̄0 is the mean feature vector, f̄s corresponds to the sth prin-
cipal component, and w is the weight vector that determines the
reconstructed feature vector. Using this equation instead of Eqn. 6,
due to the reduced dimension, the problem can be solved much
more efficiently as the running time scales almost linearly with the
number of unknown weights. As we will show later (see Fig. 19),
using dimensionality reduction, the data-driven deformation results
with 4 and 18 basis vectors are visually very similar, yet tens of
times faster than directly using the original example model dataset.
This shows that fewer basis vectors are often sufficient for mesh
manipulation than for traditional reconstruction.

Fig. 7. Deforming a cylinder model (top row) using various styles speci-
fied by example models (middle row). Bottom row: the corresponding de-
formed models with the handles highlighted.

In summary, our RIMD representation supports flexible posi-
tional constraints, allows meaningful linear blending (including in-
terpolation/extrapolation) and dimensionality reduction, and can
be very efficiently reconstructed using matrix pre-decomposition.
These unique characteristics make it particularly suitable for data-
driven surface modeling as we will demonstrate in the next section.

4. DATA-DRIVEN DEFORMABLE SURFACE
MODELING

In this section, we further exploit our representation for novel data-
driven surface modeling techniques, namely data-driven deforma-
tion and non-rigid registration.

Algorithm 2 Data driven deformation.
Input: Initial pose vertex positions p, RIMD features of example

models fk, Handle vertex set H and their target positions vh

Output: Deformed mesh vertex positions p′

Combination weight w is initialized based on previous deforma-
tion or initial pose.
repeat

Optimize w using gradient descent and line search
Optimize positions p′ given w using Algorithm 1

until line search step size r < ε̃

4.1 Data-Driven Deformation

Given a set of example modelsMk, and their corresponding RIMD
features fk = {log dRk,ij ,Sk,j}, we assume a RIMD feature con-
strained by the examples is defined as a linear combination of these
feature vectors fk, using weights w = {wk} satisfying

∑
wk = 1.

Our data-driven deformation is defined as finding the optimal
weights w such that the derived RIMD feature leads to a recon-
structed mesh with handles placed at the specified locations while
at the same time the overall deformation energy is minimized.
Treating handles as hard constraints guarantee that the deformed
surfaces follow user constraints precisely. Let us denote H as the
index set of handle vertices, h ∈ H is a handle index, p′h is the
location of the handle vertex and vh is the user specified location
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for the handle h. Once the weights are determined, the RIMD fea-
ture f(w) can be obtained by simple linear combination, and the
deformed vertex positions can be obtained by minimizing Eqn. 5.

Data-driven deformation is now formulated as minimizing

E(w,p′) =
∑
i∈V

∑
j∈Ni

c̃j
∑
k∈Nj

cjk‖e′jk −Ri dRij(w) Sj(w) ejk‖2,

(10)
where ejk = pj − pj , e′jk = p′j − p′j , and for each h ∈ H , p′h
is set to the user specified vh and not included in the optimization.
Note that, as described before, Ri also needs to be solved in the
energy above. We omit it from E(·) for simplicity since it is not
the focus here. This is a non-linear problem. We use gradient de-
scent with line search to find a suitable step size. The gradients
are numerically calculated. Assuming δ is the negative gradient
direction, we find the step size r through repeated halving, such
that E(w + rδ) < E(w). w is then updated to w + rδ. The
above optimization is iterated until convergence when r is less than
ε̃ = 10−6 in our experiment. Algorithm 2 shows pseudocode of the
data-driven deformation algorithm.

Our method is very efficient. Given the fixed set of handle ver-
tices, the matrix pre-decomposition only needs to be performed
once and can be reused for both updated weights (iterations used
to find optimal weights) and updated handle positions (when the
user drags handles). With a good initialization from the initial
shape/previous deformation, the solution is efficient and real-time
performance is obtained for a medium-sized collection of example
models. For a large number of example models we first perform an
analysis of the shape space to reduce redundancy (see Sec. 3.4). A
simple example is shown in Fig. 7. Given a reference model and one
of the example models, our method effectively produces deformed
models following the specified styles.

As a data-driven approach, our method effectively utilizes exam-
ple shapes to help guide the deformation. In practice however, the
deformation specified by the handles may not be fully present in the
examples. As we will show later, even in such cases our method still
produces reasonable deformation with necessary distortions uni-
formly distributed, which is desirable.

Multi-resolution Optimization. To efficiently process dense
mesh models, inspired by [Fröhlich and Botsch 2011], we apply the
data-driven deformation in simplified mesh models first, which is
then used to guide the deformation of the original mesh models. To
simplify the shapes, we adapt the quadric error metric based mesh
decimation framework [Garland and Heckbert 1997] such that the
cost of contracting an edge (vi, vj) is related to both the geome-
try and deformation properties. The cost now includes 3 terms. The
first term is from the original definition v̄T (Qi + Qj)v̄, where v̄
is the new vertex location, and Qi and Qj are quadric error ma-
trices at vi and vj respectively. The second and the third terms
are new, which are the Frobenius norm of standard deviations of
log(dRij) and Si/Sj over all the shapes in the dataset. These new
terms penalize contraction of edges with more variations across
shapes. We normalize each term by the standard deviations δQ,
δR and δS over all the edges. Cij = (v̄T (Qi + Qj)v̄)/δQ +
‖std(log(dRij))‖F /δR +(‖std(Si)‖F +‖std(Sj)‖F )/δS , where
std(·) is the matrix corresponding to the standard deviation of each
entry, and ‖ · ‖F is the Frobenius norm of the matrix.

We simplify the original mesh M to obtain M ′ and keep the
map from M to M ′. Then data-driven deformation is applied to
the simplified mesh. After the optimization we get the represen-
tation f̃ of the deformed mesh M̃ ′. This is equivalent to getting
the rigid rotation matrix R̃i and scaling matrix S̃i at each vertex

(a) (b) (c)

(d) (e)

Fig. 8. Non-rigid registration of a synthetic card paper model with two
examples. (a)(b) example models (flat paper with 0◦ dihedral angle and
folded paper with 90◦ dihedral angle), (c) the target paper folded with 170◦

dihedral angle, (d) result of standard non-rigid registration; (e) result of our
data-driven method.

on the simplified mesh. According to the mapping, we obtain the
rigid rotation matrix Ri and scaling matrix Si of the original mesh
M , which can be converted to RIMD representation f . Based on
f , we reconstruct the deformed shape by optimizing Eqn. 5 (typ-
ically within a few iterations). [Fröhlich and Botsch 2011] uses
deformation transfer [Sumner and Popović 2004] to obtain defor-
mation of the original mesh from the simplified mesh. When the
mesh is significantly simplified, direct deformation gradient trans-
fer of adjacent faces produces jagged results. Our multi-resolution
optimization on the other hand uses the transferred representation
as the guidance and the rigid rotation of each vertex on the original
mesh is re-optimized and thus is free from such artifacts. The Haus-
dorff distance between the multi-resolution optimization and direct
optimization on the original mesh is negligible – for the SCAPE
and elephant cases they are both less than 1% of the radius of the
bounding sphere. As demonstrated in the supplementary video, the
data-driven deformation for the SCAPE dataset with 10 PCA axis
models is very efficient: by simplifying the original mesh with 25K
triangles to 3K triangles, data-driven deformation takes less than
50ms. Real-time performance with over 20 fps is achieved.

4.2 Data-Driven Non-Rigid Registration

Using our representation, we further propose a novel data-driven
approach to non-rigid registration. For a dynamic object (such as
a human body), we first capture a complete template model of the
object which can be obtained using e.g. KinectFusion [Izadi et al.
2011]. Then given a new scan of the deformed object from a single
view using a low-quality depth camera (Kinect v2 is used in our ex-
periments), we register the template to the noisy, often incomplete
scan. This is challenging due to the missing information and poten-
tially substantial deformation between the template and the scan.
To address this, we use a data-driven approach to help improve the
non-rigid registration.

We make a reasonable assumption that a collection of deformed
objects of the same class is available. So for instance for human
body registration, a collection of deformed human bodies (of an
arbitrary person) is sufficient. This allows us to use existing pub-
lic datasets for data-driven non-rigid registration. We assume mod-
els in the collection have the same connectivity (which many ex-
isting datasets satisfy). We establish correspondence between the
template model and the models in the collection by specifying a
few key correspondences. This is similar to [Sumner and Popović
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(a) (b) (c) (d)

Fig. 9. Comparison of rotation difference representations for shape blend-
ing using the synthetic example in Fig. 8. The first row is the interpolation
results when t = 0.5, the second and third rows are the extrapolation results
with t = 1.5 and t = 2, respectively. (a) the ground truth with 45◦, 90◦ and
135◦ dihedral angles, (b) the log-exp results, (c) the procrustes projection of
linear blending of rotation difference matrices, (d) the linear interpolation
of quaternions.

2004], where the user selects vertices in correspondence between
the template model and the models in the collection. Deformation
transfer [Sumner and Popović 2004] is then used to deform the
models in the collection to produce models with geometry similar
to the template. The resulting models are used as examples.

Similar to the data-driven deformation, we assume that a linear
combination of feature vectors in the example space best repre-
sents the desired non-rigid deformation. w is the weight vector, and∑
wk = 1. We formulate non-rigid registration as an optimization

problem minimizing

E(w,p′) =
∑
i∈V

∑
j∈Ni

c̃j
∑
k∈Nj

cjk‖e′jk −Ri dRij(w) Sj(w) ejk‖2

+ λpoint

∑
h∈H

‖vh − p′h‖2 + λplane

∑
h∈H

‖nh(vh − p′h)‖2,

(11)

where p contains the template vertex positions, p′ is the solution
that corresponds to the deformed template vertex positions that reg-
ister well with the scan.H is the set of vertices whose current posi-
tions are sufficiently close to the scan. vh is the foot point position
when projecting vertex h to the scan, and nh is the normal direc-
tion at the foot point. The first term constraints the deformation
to be as-rigid-as-possible, from some examples in the deformation
space; this gives a knowledge-based prior. The second and the third
terms ensure the deformation fits with the scan, where the second
term is point to point distance, and the third term is point to plane
distance. We choose λpoint and λplane as 0.2 and 0.8 in our ex-
periments. Note that in principle we should also optimize the rigid
transform between p′h and vh, in addition to non-rigid deforma-
tion. We can prove that our optimization handles this automatically
without explicitly introducing the rigid transform; see the proof in
the appendix which shows that the energies with or without explicit
optimization of rigid transforms have the same global minimum, al-
though due to the non-linear nature, they may lead to different local
minima.

The energy formulation involves the weights w as well as the
closest point correspondence, in addition to the deformed positions
p′. We initialize the optimization by choosing one example model
that best fits the scan. Assuming this is the kth model, we initial-
ize w such that wk = 1 and wj = 0,∀j 6= k. We then solve the

(a) (b) (c) (d)
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Fig. 10. Shape reconstruction for the deformed bar (top row) and cylinder
(bottom row) shapes. (a) source mesh, (b) deformed mesh, (c) reconstructed
mesh using cotangent weights (with error color coding), (d) reconstructed
mesh using uniform weights (with error color coding).

problem by using an algorithm similar to non-rigid ICP: we alter-
nate between two steps, namely finding the correspondenceH , and
finding the improved positions p′ and weights w minimizing the
energy. The former step is similar to ICP as described above. Given
fixed correspondence, we solve the latter step by using a gradient
descent algorithm to optimize w with line search for a suitable step
size, similar to the data-driven deformation. For a given w, we use
constrained reconstruction with soft constraints to recover vertex
positions p′ and local rotations (see Sec. 3.2). Algorithm 3 shows
pseudocode of the data-driven non-rigid registration algorithm. For
a large number of example models, we similarly perform an anal-
ysis of the shape space first to reduce redundancy (see Sec. 3.4).
A simple synthetic example is shown in Fig. 8. Given only two
examples with card papers forming dihedral angles of 0◦ (a) and
90◦ (b), the aim is to find a non-rigid registration from (b) to (c)
with a dihedral angle of 170◦. The existing non-rigid registration
method [Bouaziz and Pauly 2013] does not converge to the cor-
rect position (d) whereas the additional examples help to show the
potential deformation which leads to the correct result (e).

Algorithm 3 Data-driven non-rigid registration.
Input: Initial pose vertex positions p, RIMD features of example

models fk, scanned point cloud data
Output: Deformed mesh vertex positions p′

Combination weight w is initialized based on the nearest shape
in the example set.
repeat

Find nearest points in the point cloud for each vertex
Optimize w using gradient descent and line search
Optimize positions p′ given w (with position and normal soft
constraints) using Algorithm 1

until |∆E| < ε

5. RESULTS

Our experiments were carried out on a computer with an Intel i7-
4790K CPU and 16GB RAM. Depending on the size of the mesh
and the number of example models (or the number of reserved ba-
sis vectors if PCA is used), our data-driven deformation takes from
a few milliseconds up to about 50 ms, which gives real-time feed-
back. The detailed running times of our non-rigid registration algo-
rithms are shown in Table I. Our data-driven non-rigid registration
takes under 15s for these examples. We used various datasets from
the existing research, including [Anguelov et al. 2005], [Zhang
et al. 2004], [Sumner and Popović 2004] and [Vlasic et al. 2008].
When compared with existing non-rigid registration methods, we
use the code from [Bouaziz and Pauly 2013] and adapt it to register
3D meshes to scans. Throughout the paper we have shown some
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(a) (b) (c)

Reference

(d)

Fig. 11. Deforming of a thin bar with large scale rotations. (a) [Fröhlich
and Botsch 2011], (b) [Sumner et al. 2007], (c) [Sorkine and Alexa 2007],
(d) our reconstruction results with constraints.

(a) (b) (c) (d) (e) (f)

Fig. 12. Shape blending results of MeshIK and our method using a syn-
thetic example. The first row is the result of MeshIK [Sumner et al. 2005],
The second row is the result of our method. (b)(f): two simple surfaces indi-
cating the start and end shapes for blending, (c)-(e): intermediate surfaces,
(a) illustration of the rotations of both triangles.

Table I. Statistics of the data-driven non-rigid registration
running times.

Dataset # Vertices # Models # iteration. (s) total (s)
card 2500 2 0.02 0.11

SCAPE 12500 71 1.37 14.3
hand 10825 56 1.24 12.9

examples to demonstrate the ideas of our method. In this section,
we will show more results, and compare them with state-of-the-art
methods.

5.1 Deformation representation

Comparison of rotation difference representations. Our tech-
nique benefits greatly from linear analysis of features, for both
shape space construction and PCA dimensionality reduction. We
compare the log-exp based rotation difference representation we
used with alternative rotation difference representations, namely
rotation matrix and quaternion. As the slerp interpolation of quater-
nions is non-linear, it cannot be applied to our problem. We thus use
an alternative approach of linear interpolation of rotation matrices
and quaternions, followed by normalization. For the blended rota-
tion matrices, the Procrustes projection is used to map them back
to optimal orthonormal matrices, and for quaternions, the blended
quaternions are simply normalized to be of unit length.

Fig. 13. The original bar model and with one end rotated by 360◦.

Fig. 14. Blended shapes and deformation. First column: MeshIK [Sumner
et al. 2005], second column: [Fröhlich and Botsch 2011], third column:
[Baran et al. 2009], fourth column: our results. First row: 1:1 blending of
two shapes in Fig. 13, second and third rows: blended shapes deformed with
constraints.

Table II. Mean and maximum reconstruction errors (cf. Fig. 10) with
different edge weighting (cotangent vs. uniform).

Case
mean errors maximum errors

cotangent uniform cotangent uniform
Bar 1.41× 10−4 1.95× 10−4 1.97× 10−3 2.95× 10−3

Cylinder 1.05× 10−4 1.35× 10−4 5.97× 10−4 1.15× 10−3

We compare the results by blending two shapes shown in
Fig. 8(a)(b). By using a synthetic example, the ground truth can be
easily obtained for fair comparison. As shown in Fig. 9, the log-exp
representation we used produces very similar results to the ground
truth in both interpolation (first row) and extrapolation (second and
third rows), whereas both the linear interpolations of the rotation
difference matrices and quaternions lead to incorrect extrapolation
results. Extrapolation appears frequently and is essential to effec-
tively exploit the hidden knowledge in data-driven shape deforma-
tion and PCA analysis. The log-exp representation allows linear
blending and obtains robust results in both interpolation and ex-
trapolation, and thus is more suitable for our technique.

Comparison of different edge weighting cij . We compare the
cotangent weights cij used in Eqn. 1 with alternative uniform
weights for shape reconstruction (see Fig. 10). We use shapes
from [Levi and Gotsman 2015] and simplify certain regions to
demonstrate the behavior of poor triangulation. The reconstruc-
tion errors measured as Euclidean distances from the ground truth
are illustrated using color coding. The mean and maximum errors
are summarized in Table II. While errors are fairly small for both
cases with little visual difference, the reconstructed errors (espe-
cially maximum errors) are substantially smaller with cotangent
weights.

Comparison with ARAP. Similar to [Sorkine and Alexa 2007],
our optimization approach involves both global and local steps. For
the global step, both our method and ARAP [Sorkine and Alexa
2007] solve a linear system involving a Laplacian matrix with
cotangent weights. For the local step, both methods use SVD de-
composition. These dominant steps take identical time. The only
difference in running times is that ARAP needs to access 1-ring
neighbors of each vertex, whereas our method needs to access 2-
ring neighbors when the matrices are built. By using precompu-
tation, our optimization can be implemented by accessing 1-ring
neighbors of each vertex twice. Although our method needs to ac-
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(a) (b) (c) (d) (e) (f)

Fig. 15. Deformation of an elephant using the dataset from [Sumner and Popović 2004]. (a) input model with handles highlighted, (b) ARAP [Sorkine and
Alexa 2007], (c) [Sumner et al. 2007] (d) MeshIK [Sumner et al. 2005], (e) [Fröhlich and Botsch 2011], (f) our data-driven deformation method.

(a) (b) (c) (d) (e) (f)

Fig. 16. Comparison of deformation results using the SCAPE dataset [Anguelov et al. 2005]. (a) input model, (b) ARAP [Sorkine and Alexa 2007], (c) [Sum-
ner et al. 2007] (d) MeshIK [Sumner et al. 2005], (e) [Fröhlich and Botsch 2011], (f) our data-driven deformation method.

cess more neighboring vertices, the run time difference is very lit-
tle. For each iteration of the bar example in Fig. 13 with 12K tri-
angles, our method takes 44ms whereas ARAP takes 40ms.

In Fig. 11 we show non data-driven deformation results (so with-
out examples). The handle is rotated by 180◦, and our method
distributes the deformation distortions much more uniformly than
state-of-the-art methods [Fröhlich and Botsch 2011; Sumner et al.
2007; Sorkine and Alexa 2007]. Note that although the focus of our
method is data-driven deformation, high quality non data-driven
deformation is also essential, and is particularly useful when the
user moves handles beyond the scope of example deformations.

Comparison with MeshIK. Data-driven approaches rely on ex-
amples, and the capability of blending shapes is essential. Fig. 12
shows a comparison with MeshIK [Sumner et al. 2005] on a sim-
ple synthetic dataset containing only two triangles. MeshIK finds
paths with minimal rotation of triangles individually, which causes
self intersections from (e) to (f). This shows that MeshIK cannot
blend large-scale rotations well. Our method produces artifact-free
blending.

Shape blending and constrained reconstruction. Existing re-
search most relevant to our representation involves data driven ap-
proaches [Sumner et al. 2005; Fröhlich and Botsch 2011] and rota-
tion invariant coordinates [Lipman et al. 2005; Kircher and Garland
2008; Baran et al. 2009]. The latter are not designed for data-driven
deformation so do not exploit examples. To make a fair compari-
son, we apply these methods to a blended shape (1:1 blending from
examples in Fig. 13).

Rotation invariant coordinates are not designed for data-driven
deformation. For example, [Baran et al. 2009] is a technique for
semantic deformation transfer. To use such representations for de-

formation, the user needs to specify both the positions and rotations
at handles. The handle rotations are used as constraints for the first
linear system and the handle positions for the second linear sys-
tem. As demonstrated in [Lipman et al. 2005], both the rotation
and position handles need to be assigned compatibly to avoid un-
natural deformation. This increases the workload and difficulties
for the user. Our approach, as well as existing data-driven defor-
mation techniques [Sumner et al. 2005; Fröhlich and Botsch 2011],
only requires handle positions to be specified.

As shown in Fig. 14, the original bar and the bar rotated by
360◦ are blended (see top row). MeshIK does not handle large rota-
tions well. [Fröhlich and Botsch 2011], [Baran et al. 2009] and our
approach all produce reasonable results. When significant defor-
mations are applied, existing methods exhibit significant artifacts
(with [Baran et al. 2009] produces overall better results) and our
method handles all these cases effectively.

Reconstruction running time comparison. We compare the
running times with state-of-the-art deformation methods using the
example in Fig. 14 with 12K triangles, with the following imple-
mentation setup: solving linear systems using MATLAB, SVD de-
composition using Eigen and parallelization using OpenMP.

Existing rotation invariant coordinates [Lipman et al. 2005;
Kircher and Garland 2008; Baran et al. 2009] have a similar re-
construction framework which involves solving two linear systems.
The first linear system solves local frames and the second global
positions. Given a new shape representation, the coefficients of the
first linear system will be different, so it is necessary to decompose
the matrix every time. When [Baran et al. 2009] is used without seg-
menting the shapes into patches (i.e. treating each face as a patch),
it needs 520ms to solve the first linear system for frames and a fur-
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(a) (b) (c) (d) (e) (f )

Fig. 17. Data-driven deformation results with two example models. (a) input model with handles highlighted, (b)(c) two additional example models, (d) result
of MeshIK [Sumner et al. 2005], (e) result of [Fröhlich and Botsch 2011], (f) result of our data-driven deformation.

(a) (b) (c) (d) (e) (f) (g)

Fig. 18. Comparison of our multi-resolution optimization and direct deformation transfer. (a) the original lion mesh model with 5000 vertices, (b) simplified
model with 10% of the original size, (c) deformed model of the simplified model, (d) direct deformation gradient transfer to the original resolution with handle
constraints, (e) our multi-resolution optimization result using (b), (f) our multi-resolution optimization result using a simplified model with 3K triangles, (g)
deformation result on the original mesh.

ther 20ms for SVD decomposition to calculate the local rigid rota-
tions. For comparison, without using multi-resolution optimization,
after a one-off matrix pre-decomposition, each iteration of our al-
gorithm involves two steps: 14ms for the global step and 30ms for
the local step. A total of 44ms is needed for each iteration, and four
iterations are needed to converge in this case. Our method is thus
about 3 times faster than [Baran et al. 2009]. [Fröhlich and Botsch
2011] uses the Gauss-Newton method to solve the formulated op-
timization. In each iteration the Jacobian matrix is calculated and
used for solving the linear equations. However, the Jacobian ma-
trix is changed in each iteration, leading to a total running time
of 24600ms. While being slow, this method applies to data-driven
deformation, unlike existing linear rotation invariant coordinates.

To reduce the size of the linear system for frames, [Baran et al.
2009] partitions the shapes consistently into patches. While being
effective, this technique needs a large dataset with various poses
such that face clusters well capture rigid components of the de-
forming shape, and the approximation error minimized. This is not
the case for this example where only two examples with uniform
distortions are provided, and thus the patch based technique is not
appropriate. As we have shown, our method can also use multi-
resolution optimization for speed up, which achieves real-time per-
formance for data-driven deformation. Note also that it is not obvi-
ous how existing rotation invariant coordinates [Lipman et al. 2005;
Kircher and Garland 2008; Baran et al. 2009] can be generalized to
data-driven deformation.

5.2 Data-driven mesh deformation

We compare our deformation method with various state-of-the-art
deformation methods, with or without using examples.

Fig. 15 is an example of deforming an elephant model with a
small number (12) of examples. Since the handles move substan-
tially it is challenging for non data-driven methods, which produce
results with visible distortion artifacts. State-of-the-art non data-
driven methods [Sorkine and Alexa 2007; Sumner et al. 2007] (b-c)
produce overall deformations that look quite rigid, as the deforma-
tions are purely driven by the movement of handles, hence do not
look realistic. Data-driven methods (d-f) produce much more vivid

(a) (b) (c)

Fig. 19. Data-driven deformation using the ‘march2’ dataset from (a) in-
put model with handles highlighted, (b) data-driven deformation with 4 ba-
sis vectors, (c) data-driven deformation with 18 basis vectors.

results, since the dataset provides the elephant galloping sequences
which give the information of the leg and head movements. The
data-driven methods deform the front and rear legs much more re-
alistically, giving a running effect. The non data-driven methods
simply rotate the front legs which is too rigid. Existing data-driven
methods [Sumner et al. 2005; Fröhlich and Botsch 2011], however,
are not able to cope with such large-scale deformation well, and
thus have visible artifacts. Our method produces realistic defor-
mation without artifacts. For example, the trunk is deformed with
no examples in the dataset having similar trunk deformation. In
such cases, our approach turns to as-rigid-as-possible reconstruc-
tion with constraints defined on two-ring neighborhoods, which
produces smoother and more realistic results than existing data-
driven methods.

Fig. 16 shows an example of using the SCAPE dataset [Anguelov
et al. 2005]. Due to the large movement of handles (hence sig-
nificant change of pose), existing methods, including data driven
methods [Sumner et al. 2005; Fröhlich and Botsch 2011] produce
results with significant distortions and/or self-intersections. This
is because existing non data-driven methods do not distribute dis-
tortions well due to lack of information, and existing data-driven
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(a) (b) (c) (d) (e) (f ) (g)

Fig. 20. Data-driven registration of human bodies. (a) a Kinect scan, (b) the template model obtained using KinectFusion, (c) the closest model in the
transferred dataset, (d) standard non-rigid registration with 30 iterations, (e) standard non-rigid registration with 40 iterations, (f) our data-driven registration
results, (g) our results with the scans overlaid.

methods do not handle large deformations well. A natural result is
obtained using our data-driven method.

Fig. 17 shows a challenging case where the example models in
the dataset differ substantially. The head is rotated more than 180◦,
and the tip of the tail is rotated nearly 360◦ between (a) and (b)(c).
These three models give the information of the rotation of the tail
and the neck as well as the joint movement of the legs. As shown in
Figs. 12 and 14, MeshIK [Sumner et al. 2005] fails to blend exam-
ple models with more than 180◦ rotation, so it is not surprising that
MeshIK also fails in this example. The three example models give
the information about the head turning from left to right. However
in this example, the user drags the head down, which is out of the
knowledge from the data set. As shown in Fig. 11, [Fröhlich and
Botsch 2011] does not handle such cases well and over-blends the
neck. Our method works well by delivering realistic deformation
learned from the examples (both interpolation and extrapolation),
or smooth deformation when such information is not available.

Fig. 18 compares our multi-resolution optimization with di-
rect deformation transfer. We substantially simplify the lion model
to only 10% of the original size. Our multi-resolution optimiza-
tion produces a visually reasonable deformation result whereas di-
rect deformation transfer produces a deformed result which is not
smooth. In practice, we simplify the original shapes to 3K trian-
gles for better balance of quality and speed, and the obtained result
is visually very close to deformation on the original mesh. For the
examples in the paper, the Hausdorff distance between the multi-
resolution optimization result and the direct deformation result of
the original mesh is below 1% of the radius of the bounding sphere.

Fig. 19 is an example of data-driven deformation using PCA for
dimensionality reduction. This dataset contains shapes of a man
walking. The differences between deformation results with 4 and
18 basis vectors are almost unnoticeable. This shows that for de-
formation, a fewer number of basis vectors than for reconstruction
is often sufficient.

5.3 Data-driven non-rigid registration

We compare our method with general surface-based non-rigid reg-
istration. Such methods [Bouaziz and Pauly 2013] are generally not
data-driven. To make a fairer comparison, we choose the example
model which is closest to the scan as the initialization for both our
and alternative methods. The method [Bouaziz and Pauly 2013] has
a variation which is data-driven and uses PCA. However, it is only
used for faces where the deformation is relatively subtle. We will
demonstrate that such a technique performs worse than not using
data for large-scale deformations. Thus by default we compare our
method with the non data-driven version of their method.

Fig. 20 shows two examples of non-rigid registration, using the
SCAPE dataset [Anguelov et al. 2005] as the model collection.
A complete reconstruction of the person treated as a template is
obtained using KinectFusion (b) and transferred to all the models
in the SCAPE database (see supplementary material for the trans-
ferred shapes). A single depth scan is then taken using a Kinect v2
camera (a) and our aim is to find a non-rigid registration that aligns
the template to the scan. As the template can be substantially dif-
ferent from the scan, we choose the transferred model closest to the
scan as initialization (c). This model however still has significant
difference from the scan. Standard non-rigid registration using an
ICP-type optimization tends to find wrong correspondences. As a
result, with 30 iterations, the result is distorted, and also quite dif-
ferent from the scan (d). With more iterations (40), however, the
result becomes worse, with even more distortions (e). Our result
nicely registers the template to the scan, thanks to the prior pro-
vided by the example models (f). Kinect scans are noisy, which
can be better seen when our result is overlaid with the scan (g).
Fig. 21 shows the registration results of our data-driven method,
and [Bouaziz and Pauly 2013] without and with PCA (for the latter
the same number of principal axes are used as our method for a fair
comparison). It can be clearly seen that both the non-rigid regis-
tration and its PCA variant introduce visible artifacts. In particular,
the registration results using PCA have shrinking artifacts and look
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(a) (b) (c) (d)

Fig. 21. Data-driven registration comparison. (a) point cloud captured by a
Kinect V2, (b) the registration result of our data-driven registration method,
(c) non-rigid registration result of [Bouaziz and Pauly 2013] without PCA,
(d) non-rigid registration result of [Bouaziz and Pauly 2013] with PCA.

Fig. 22. Data-driven registration of hand. (a) Kinect scans, (b) closest
models in the transferred dataset, (c) standard non-rigid registration results,
(d) our data-driven registration results.

worse. This is because simple PCA linear analysis based on vertex
coordinates cannot handle datasets with large rotations.

Fig. 22 gives two examples of non-rigid registration to deformed
hands (see supplementary material for the transferred example
shapes). The captured scans are noisy and incomplete due to oc-
clusions. The standard non-rigid registration converges to some
local minima which are still quite far from the target scans. Our
data-driven approach properly constrains the deformation space,
and allows finding suitable transformations to align the scans. For
the example in the bottom row, we also show the registration
error distribution as a histogram in Fig. 23(a). Our method has
more points with low errors than standard non-rigid registration.
Fig. 23(b) shows how the registration error reduces and converges
using our method. Note that since the energy reduces monotoni-
cally, our method always converges to some local minimum. As
demonstrated by these examples, the use of example models helps
to produce well registered results.

We show an example to demonstrate how our method performs
with increasing numbers of examples. We perform experiments us-
ing the ‘march2’ dataset from [Vlasic et al. 2008]. We select one
shape (shown in Fig. 24(b)) from the dataset as the target shape
and remove it from the dataset. The standing shape (as shown in
Fig. 24(a)) is chosen as the source shape and registered to the tar-
get. To avoid bias due to the order of models in the dataset, we ran-
domly order the dataset and run the experiments 20 times and report
the average results. For each run, we start from an empty example
dataset and incrementally add models in a random order into the
dataset one at a time and run our data-driven non-rigid registration
algorithm. As discussed in the paper, 18 PCA modes capture over
90% of variance in the whole dataset. When the example dataset for
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Fig. 23. Quantitative analysis of Fig. 22(bottom). (a) histogram showing
vertex registration error distribution, (b) registration energy over iterations.

data-driven registration contains 18 or fewer models, we do not ap-
ply PCA analysis and use all the shapes. When the example dataset
contains more than 18 shapes, we obtain PCA-based non-rigid reg-
istration results by applying PCA analysis and only keeping the 18
dominant modes. This is then compared with the results obtained
without PCA by using all the shapes in the example dataset. We cal-
culate the average Euclidean distance between the registered shape
and the ground truth shape to measure the accuracy. As shown in
Fig. 24(c), when the number of models for data-driven registration
increases, for both registrations with and without PCA, the mean
Euclidean distances decrease. This is understandable as with more
example shapes involved, the information of the deformation space
is better covered. The data-driven registration with PCA produces
slightly more accurate results than without using PCA as it is less
sensitive to inclusion of dissimilar examples to the example dataset
(see Fig. 24(c)) while reducing the running times dramatically (see
Fig. 24(d)).

We perform further quantitative analysis of non-rigid registra-
tion. We take each model from the SCAPE dataset [Anguelov et al.
2005] in turn as the target model, and use the remaining models as
example models. Fig. 25 shows such an example. (a) is the chosen
target model, and (b) is the closest model in the remaining example
set. Distortions of standard non-rigid registration (c) and our data-
driven registration (d) results are shown using color-coding. The
registration error distribution of all the vertices is summarized in
Fig. 26 which indicates the percentage of vertices (Y -axis) within
different fitting errors (X-axis). This shows that for our method
substantially more vertices have smaller errors.

Please refer to the accompanying video for real-time screen
recording and dynamic presentation of deformation and registra-
tion results.

6. CONCLUSION

In this paper, we introduce a new rotation invariant mesh difference
representation to encode mesh deformations, and a novel recon-
struction algorithm that efficiently solves for the vertex positions
and local rotations simultaneously. The representation allows com-
bining multiple deformations by a linear combination. We propose
a data-driven approach by exploiting knowledge in the example
models. Significantly better results than state-of-the-art methods
are obtained for shape deformation as well as non-rigid registration.
The representation also allows analysis of a set of deforming mod-
els, and extraction of a compact set of bases to represent essential
deformation modes in the dataset. Using this approach, mesh ma-
nipulation becomes more efficient, especially when a large number
of examples are provided.
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Fig. 24. Registration accuracy and running time comparison without and with PCA. (a) initial shape for data-driven registration, (b) target shape to be
registered which is removed from the example dataset, (c) mean Euclidean error, (d) running time. Results are averaged over twenty runs.
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Fig. 25. Leave-one-out non-rigid registration test using the SCAPE
dataset [Anguelov et al. 2005]. (a) chosen target model, (b) the closest ex-
ample model, (c) standard non-rigid registration result with error visualiza-
tion; (d) our result with error visualization.

As demonstrated, our data-driven algorithms effectively ex-
ploit knowledge in the example model collection. Our represen-
tation allows both interpolation as well as extrapolation, and effec-
tively blends multiple deformations. A limitation of our data-driven
method is that it may not perform realistically if the dataset is not
large enough to cover the target deformation or scan. However, we
have demonstrated that in such challenging cases, our method still
produces better results than existing data-driven methods. Another
limitation is that we currently use gradient descent to solve our
problem which has scope to improve the efficiency. Although this
is sufficiently efficient for many interactive applications, and real-
time data-driven deformation is achieved with various optimization
(matrix pre-decomposition, and optionally multi-resolution opti-
mization and PCA dimensionality reduction), the performance may
still be further improved for registration. We will investigate using
a GPU-based Gauss-Newton optimizer [Zollhöfer et al. 2014].
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