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Recognition from Web Data: A Progressive

Filtering Approach
Jufeng Yang, Xiaoxiao Sun, Yu-Kun Lai, Liang Zheng and Ming-Ming Cheng

Abstract—Leveraging the abundant number of web data is a
promising strategy in addressing the problem of data lacking
when training convolutional neural networks (CNNs). However,
web images often contain incorrect tags, which may compromise
the learned CNN model. To address this problem, this paper
focuses on image classification and proposes to iterate between
filtering out noisy web labels and fine-tuning the CNN model
using the crawled web images. Overall, the proposed method
benefits from the growing modeling capability of the learned
model to correct labels for web images and learning from such
new data to produce a more effective model. Our contribution is
two-fold. First, we propose an iterative method that progressively
improves the discriminative ability of CNNs and the accuracy of
web image selection. This method is beneficial towards selecting
high-quality web training images and expanding the training
set as the model gets ameliorated. Second, since web images
are usually complex and may not be accurately described by
a single tag, we propose to assign a web image multiple labels
to reduce the impact of hard label assignment. This labeling
strategy mines more training samples to improve the CNN model.
In the experiments, we crawl 0.5 million web images covering all
categories of four public image classification datasets. Compared
with the baseline which has no web images for training, we show
that the proposed method brings notable improvement. We also
report competitive recognition accuracy compared with the state
of the art.

Index Terms—Noisy web data, CNN, Progressive Filtering,
Multiple Labels

I. INTRODUCTION

THE success of convolutional neural networks (CNNs)

is owing to sufficient labeled training data. However,

labeling millions of images manually is very time-consuming

and laborious, which can be practically impossible for many

problems where a high level of expertise is needed. Lack of

data is arguably the most significant obstacle to developing

deep models for new tasks, so it is highly desirable and

sometimes even necessary to train an effective CNN model

with limited well-labeled data. To tackle this problem, some

works [1], [2] consider the transferability of CNNs. They ini-

tialize parameters with a pre-trained model (e.g., AlexNet [3],

VGGNet [4] etc.) on the large-scale dataset ImageNet [5], and

then fine-tune the model on the specific dataset. Meanwhile, as

an alternative approach, some recent works [6], [7] have shown
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Fig. 1. Examples of the Food-101 dataset (left) and noisy web data (right)
from the classes ice cream and frozen yogurt. On the left are images from
the public dataset, and the right shows the images collected from the web by
searching with the category names, listed in the decreasing order of reliability.
We observe that images in the two middle columns of the web images
are ambiguous w.r.t. their categories, and those in the rightmost column are
outliers.

that fine-tuning a CNN model with extensive web data can

be more effective than fine-tuning it merely on a small-scale

clean dataset. Such works harvest images from the Internet and

associate them with labels either from the keywords originally

used for retrieval or tags extracted from their description texts.

The major challenge of using web data is two-fold: given a

corpus of web data, it is critical to retrieve images and their

tags 1) accurately and 2) as many as possible. Without doing

so, the selected web data may not accurately reflect the image

content or have a limited number. The two challenges arise

from the fact that web images have complex content and that

the data distribution of web images can be distinct from the

target dataset.

On the one hand, the content of web images is usually

complex. Given its complex nature, it is likely that an image

description does not accurately reflect the true content of

the image [8]–[10]. For example, as demonstrated in Fig. 1,

it poses difficulties to tell whether an image contains an

ice cream or a frozen yogurt. In response to the inaccurate

tags, Krause et al. [11] remove images that appear in search

results for more than one category to reduce the effect of

noise. Vo et al. [12] filter images by ranking the predicted

results of classifiers trained on features exacted from a CNN.

Nevertheless, such methods do not consider the complex
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relationships between the tag and the content of web images.

Specifically, real-world images contain richer content than

images from public datasets. Therefore, a single tag may not

be able to sufficiently describe the information of an image

or the object related to the target task, especially when the

image contains objects of multiple similar categories at the

same time. However, since the label of real-world images is

difficult to distinguish, forcing a single label loses potentially

useful information, especially when the probabilities of an

image belonging to multiple categories are similar.

On the other hand, the data distribution of web images can

be so different from the target dataset that the basic model

trained from the well-labeled target data makes incorrect

predictions on the web data. When prediction error happens,

the corresponding web data should be discarded to prevent

error propagation. Meanwhile, without addressing the data

distribution problem, it is the easier training samples that are

more likely to be selected; the challenging training samples

which are more useful for model robustness may well be

missing, no matter how large the volume of the web data is.

Therefore, the challenge of different data distributions may

impair the full utilization of web data. In the literature, in an

attempt to address this problem, a fine-tuning process can be

conducted on the web data [6], [7]. This strategy however does

not directly address the transfer problem [13] and thus does

not make full use of the web data.

In light of the above discussions, this paper introduces

a progressive learning approach to selecting possibly many

web images with accurate labels. First, to address the data

distribution gap, we propose to iterate between classifier fine-

tuning and web tag estimation. Usually, model performance

tends to improve with an increasing amount of training data.

However, if we add a large volume of web data directly into

well-labeled data to train a CNN model, the model will fit

better with the large amount of web data rather than the well-

labeled target dataset due to their different distributions [13].

In this paper, we first incorporate “high-quality” web data

selected by the basic model in the training set to fine-tune

the CNN model. Then, the fine-tuned model is in turn used

to select web data. This process is applied iteratively. In the

beginning, a few easy samples are selected from the web data.

As the iterations progress, the CNN model grows stronger

and more diverse and challenging web data can be selected,

which further contributes to model refinement. In other words,

compared with a static model, our model is refined iteratively

with the filtered web data, and the model in turn provides a

more reliable judgment for web data selection. Therefore, web

data can be better utilized for CNN training.

Second, to address the problem of tag noise, we assign

multiple labels to a web image to reduce the impact of hard

label assignment. Specifically, given a web image, up to K
class labels with the highest prediction scores are assigned to

this image. If such labels have the similar confidence or if

the label with the highest score is consistent with the original

web tag of the image, we select this image as a new training

sample. Experimental results indicate that, by using web data

effectively, our method improves the recognition accuracy of

CNN models effectively.

In summary, this paper claims three contributions.

• We propose an iterative filtering method that progres-

sively learns from web data to improve the performance

of CNN model.

• Instead of hard label assignment, images are assigned

with multiple labels, which increases the recall of web

training data selection.

• We have collected four web image datasets in corre-

spondence to four public classification tasks. Extensive

experiments demonstrate that our method yields com-

petitive recognition accuracy against the state-of-the-art

approaches.

II. RELATED WORK

A. Deep Learning from Web Data

The training of deep models requires a large amount of

well-labeled data, but they are generally expensive to obtain.

To address this problem, recent works consider learning from

web data, which is relatively convenient to obtain and contains

a considerable level of visual information.

In this area, impressive improvement has been observed [6],

[11], [12], [14]–[17]. For web data collections, Chen et al. [14]

use a semi-supervised learning algorithm to find the relation-

ships between common sense and labeled images of given

categories. Schroff et al. [16] propose an automatic method

for gathering hundreds of images for a given query class.

These two works try to build visual datasets with minimum

human effort, but the resulting datasets contain noisy labels.

Meanwhile, the introduction of web data also improves the

performance of deep models, which is verified by recent

work [18]. To scale up to ImageNet-sized problems, Izadinia

et al. [19] perform direct learning from image tags in the

wild and achieve improved performance. Chen and Gupta [6]

present a two-stage approach to training deep models by

exploiting both noisy web data and the transferability of CNN.

Alternatively, Xiao et al. [17] use a probabilistic framework to

model the relationships among images, clean labels and noisy

labels, and then train a model in an end-to-end structure. In

addition, Krause et al. [11] download images from Google to

form training sets for different tasks and filter such data with

the human in the loop. They demonstrate the effectiveness

of using noisy web data and the benefits of performing extra

operations on noisy data, e.g., filtering.

In this work, we also use web data for CNN training but

we design a progressive learning framework. With reliable

web data incrementally added, the classification capability of

the learned model gradually improves. In the meantime, the

improved model provides more robust and accurate predictions

for web data. Further, in web data selection, we replace

the previous one-to-one label assignment with a one-to-many

strategy. This method aims to obtain more challenging and

diverse training data from web images to train discriminative

CNNs.

B. Progressive Learning

The strategy of progressive learning has been used in data

mining [20], pattern recognition [21], computer vision [22]–

[24], etc. When training data increases gradually, a progressive
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learning method allows the data analysis systems to have the

capability to learn progressively when new data is needed.

Meanwhile, it is natural that knowledge is taught from easy to

difficult in the form of a curriculum, leading to a learning

paradigm called curriculum learning [25]. Later, self-paced

learning [26] is proposed to embed easiness identification into

the learning objective of curriculum learning.

This progressive paradigm has been used in many tasks. For

example, Ma et al. [27] propose an alternative optimization

process for an optimization model of self-paced curriculum

learning, which effectively improves the standard co-training

algorithm. Dong et al. [28] propose a method that iterates

between model training and high-confidence sample selection,

which obtains improvement in few-shot object detection. Fan

et al. [23] improve the person re-identification [29] results

by using a progressive method to train and rectify the model

representation and clustering alternately. The iterative learning

scheme has also been used in previous works for image

clustering, in which the model is trained iteratively between

clustering and representation learning [30]–[32]. For example,

Yang et al. [30] learn representations and image clusters

from an unlabeled image set, and optimize the two tasks

iteratively. The two tasks interact with each other and are im-

proved simultaneously, which results in a better unsupervised

representation and well-separated clusters. Chang et al. [32]

use Deep Adaptive Clustering to calculate the similarities of

pairwise images based on the feature from a CNN, sample

similar images, and then train the CNN by using the selected

samples to improve the representation performance.

Inspired by the thought of iterative optimization and in-

cremental improvement, the proposed progressive filtering

approach exploits the relationship between the training of

the model and distinguishing of noisy web data to gradually

learn from the selected reliable web data. Different from

these methods for image clustering, the proposed method not

only needs to select reliable training data, but also needs to

handle the content complexity of web images and the different

data distributions during training. In general, each iteration of

progressive learning can be treated as an optimization problem

with the weights of the model updated as new data is fed in.

In this work, we employ progressive learning to improve the

performance of a CNN model when using web images with

noisy tags. In each iteration, the recognition performance of

the model is first improved by selected web data. Then, we

utilize the recognition power of the progressively enhanced

model to filter and correct web data, which contains new

information and can be seen as “new data”, although some of

these images may have already been seen by the model. This

method is more efficient than offline learning based methods

where the entire set of web images is used to train the CNN

model.

C. Web Datasets

Based on well-labeled visual datasets, several representative

web image datasets have been established, which are sum-

marized in Table I, in which the publicly available datasets

are shown in bold. To meet the demand of different tasks,

TABLE I
SOME EXISTING WEB DATASETS. THEY ARE COLLECTED FROM DIFFERENT

SOURCES AND USED FOR CNN TRAINING. NOTE THAT THE YOUTUBE-8M
DATASET IS COLLECTED FROM 8 MILLION URLS AND CONTAINS 1.9

BILLION VIDEO FRAMES.

Dataset Year # imgs Source

Flickr-CIFAR [15] 2014 230173 Flickr

Flickr [6] 2015 1.2M Flickr

Google [6] 2015 1.5M Google

YFCC100M [19] 2015 99.3M Flickr

Clothing [17] 2015 100000 Shopping sites

Sketch [33] 2016 191067 Google

Openimages [34] 2016 9.01M Google

M-Flower-620 [35] 2016 20211 Instagram

YouTube-8M [36] 2016 1.9B YouTube

Weakly (Bird) [37] 2016 200000 Flickr

Goldfince [11] 2016 9.8M Google

Flickr-Bing 100 [12] 2017 416000 Flickr & Bing

Flickr-Bing 1K [12] 2017 3.12M Flickr & Bing

these datasets are collected with various scales from different

web sources, e.g., Flickr, Instagram, etc. Krause et al. [11]

collect datasets from Google Images and conduct two rounds

of cleaning: active learning and human in the loop. Xiao et

al. [17] establish a clothing dataset by searching images from

shopping websites, which has both noisy labels and clean

labels obtained by manual refinement. Xu et al. [37] use

200 bird species (CUB-200-2011) as keywords and download

the top 100 images of search results. Web data collection

is related to the technique of image retrieval [38]–[41], but

the existing engines are mainly based on traditional keyword

search techniques. Similar collection methods are also used in

works [12], [19], [35], [36], [42] which utilize web data for

specific tasks.

In our work, to analyze the application of web data for

classification tasks, we collect four new web datasets from

a different perspective. We extend some manually labeled

datasets with web data from Google Images, Flickr and

Twitter, which cover classification tasks of a diverse range

of targets, including objects (food and dog), scenes, and skin

diseases. According to our observation, different resources

(search engines, social network sites, specific web pages)

have images with different characteristics. Therefore, web

data from a specific web source may be more suitable for

certain tasks than others. This observation will be evaluated

in our experiment, which also demonstrates that different data

distributions exist not only in target and web data, but also in

different web resources. Furthermore, our method can suppress

the impact of the different data distributions by progressive

learning from web data.

III. METHOD

In this work, our goal is to effectively utilize easily obtained

web images with noisy labels to train a CNN model for image

classification.

We start our method with the traditional CNN fine-tuning

process. Given a clean target dataset D = {(xn, yn)}
N
n=1, we
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Fig. 2. Pipeline of the proposed progressive learning method, which includes two major steps, namely data sampling and model updating. For data sampling,

we obtain P (y|x), score matrix S and label matrix R of web data based on model Mt−1, and use such information to obtain the dataset D̃t−1 through
a sampling scheme. Here, one to one and one to many are two types of label sampling strategies. For model updating, model Mt is initialized with the

parameters of Mt−1 and updated on the combined dataset D̂t−1 in the t-th iteration.

denote each data point as a D-dimensional vector xn ∈ R
D,

and its label as yn ∈ {1, 2, · · · , C}. Here, N indicates the size

of dataset D, and C denotes the number of categories. We

first train a CNN model M0 : f(x;θ) ∈ R
C using the clean

dataset D, where θ represents the set of model parameters.

Usually, θ inM0 is initialized with a set of weights θpre from

a pre-trained model Mpre, and then updated using stochastic

gradient descent (SGD). As mentioned above, the data volume

in D may be limited, so we employ a web dataset D̃ to

improve the CNN model. The iteration of SGD updates current

parameters θ
∗ as:

θ
∗ = θ + γ̂ ·

1

|Db|

∑

(x,y)∈Db

▽θ [L(x, y)] , (1)

where L(x, y) is a loss function, e.g., softmax.▽θ is computed

by gradient back-propagation. Db is a mini-batch randomly

drawn from the training dataset D, and γ̂ is the learning rate.

A. Progressive Learning from Noisy Web Labels

The noisy dataset D̃ = {(xm, ym)}
M

m=1 contains im-

age/label pairs: the m-th image xm and its corresponding web

tag ym. Here, M indicates the size of D̃. Fig. 2 shows the

pipeline of our method, consisting of the following two major

steps:

Web data selection for CNN training. In our method,

we first select images with reliable tags to train our model,

by utilizing the confidence of the tags. Specifically, given

an instance x and the set of labels l = [1, 2, · · · , C], the

confidence for each label is p (li|x) , i = 1, ..., C, where

a higher probability corresponds to higher confidence. We

use this information to select and correct labels for web

images. Methods that can be used to estimate p (li|x) include

SVM, softmax, Bayes classifiers, etc. Considering the high

discriminative ability of deep features, we use a softmax

function to generate the probability for each web image xm:

p(li|xm) =
eθ

⊤

i xm

∑
j e

θ⊤

j
xm

. (2)

Then, we obtain the confidence scores for the C categories

sm = {p(li|xm)}Ci=1, and rank sm in descending order. We

also record the labels rm corresponding to sm. For the web

dataset D̃, we obtain its score matrix S={sm}
M
m=1, and the

corresponding label matrix R = {rm}
M
m=1.

For a web image xm with tag ym, if the predicted label is

the same as the web tag, the web tag is preserved and xm is

selected for CNN training. Under the circumstance where the

predicted label is different from the web tag, if the prediction

confidence is higher than a threshold, we use the predicted

label to replace the web tag, and xm is selected for CNN

training. Otherwise, xm is rejected for training. As such, the

corrected label ŷm is determined by

ŷm =





ym, ym = Rm1

Rm1, ym 6= Rm1,Sm1 > ε

Ø, otherwise

(3)

where ε is a threshold for label correction, and Rm1 is the

label with the largest confidence score Sm1. In our experi-

ments, ε is set to the classification accuracy on the validation

dataset (see discussions in Section IV-D). ŷ = Ø means that

the image will not be used for training, because it is considered

as unreliable data. We employ Eq. 3 to select images for CNN

fine-tuning.

Model updating. The progressive learning will update

the model when new data is added. In the t-th iteration of

our progressive learning, we initialize the weights of Mt

on the model Mt−1 and train Mt on the mixed dataset

D̂t−1 = D ∪ D̃t−1, where D = {(xn, yn)}
N
n=1 is the clean



YANG et al.: OBJECT RECOGNITION FROM WEB DATA: A PROGRESSIVE FILTERING APPROACH 5

Algorithm 1 Progressive Learning from Web Data

Input:

Clean dataset: D = {(xn, yn)}
N
n=1;

The noisy web dataset: D̃ = {(xm, ym)}
M

m=1;

The initialized network model Mpre : f(x;θpre) ∈ R
C .

1: Fine-tune a CNN model M0 based on Mpre using D;

2: Calculate S and R for D̃ using model M0 with Eq. 2;

3: Update D̃ to obtain D̃0 with Eq. 5;

4: t←− 0;

5: repeat

6: t←− t+ 1;

7: repeat

8: Update parameters θ∗
t with Eq. 4 on each mini-batch

D̂b
t−1, D̂ = D ∪ D̃t−1;

9: until loss function L(x, y) has converged.

10: Obtain model Mt;

11: Calculate S and R for D̃ using Mt based on Eq. 2;

12: Update the dataset D̃ to obtain D̃t with Eq. 5;

13: until D̃t tends to be stable or the performance ofMt does

not improve.

Output:

The trained model: Mt : f(x;θt) ∈ R
C .

dataset, D̃t−1 = {(xm, ŷm)}
M̃t−1

m=1 is the sampled web dataset

of (t−1)-th iteration and M̃t−1 denotes the size of D̃t−1. The

parameters θ
∗
t of the model Mt is updated as follows,

θ
∗
t = θt + γ̂ ·

1∣∣∣D̂b
t−1

∣∣∣

∑

(x,y)∈D̂b
t−1

▽θt
[L(x, y)] , (4)

where θt is initialized with the weights θt−1 of the model

Mt−1. The training of the model will be finished when

the model is converged. Specifically, the iterative process of

progressive learning repeats until either updated dataset D̃t is

stable or the modelMt is not improved compared withMt−1.

B. One-to-Many Correction for Noisy Labels

As mentioned in Section I, the content of web images is

usually complex. As illustrated at the bottom of Fig. 2, a

web image may contain multiple objects and the categories

of these objects are hard to disambiguate. Previous works

usually employ a one-to-one label assignment for web images

and select those images whose tag equals their assigned label.

However, one-to-one label assignment and comparison only

compare the image tag ym with the top ranked label to

obtain the final label, which may be inaccurate or may lose

useful domain information for classification. To address this

challenge, we replace the label assignment method of Eq. 3

with one-to-many label assignment,

ŷm =





Rm1, case 1

{Rmi}
k
i=1, case 2

Ø, otherwise

(5)

where k denotes the number of labels that are assigned to

xm. The situation belongs to case 1 or case 2 if and only

TABLE II
STATISTICS OF THE TARGET AND WEB DATASETS. C IS THE NUMBER OF

CLASSES. “TR/TE” DENOTES THE NUMBERS OF TRAINING AND TEST

IMAGES IN EACH TARGET DATASET. WEB DATA REFERS TO THE IMAGES

COLLECTED FROM THE INTERNET.

Dataset
Target Data Web Data

C # imgs tr/te # imgs

SD-198 [43] 198 6,584
3,292

3,292
82,684

Stanford Dogs [44] 120 20,580
12,000

8,580
52,115

Food-101 [45] 101 101,000
75,750

25,250
240,096

MIT Indoor67 [46] 67 15,620
5,360

1,340
76,907
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Fig. 3. Numbers of images collected from different sources, i.e., Flickr,
Google and Twitter. “Clean” is the data of the standard dataset.

if k satisfies the constraint k ≤ K, where K is the maxi-

mum number of labels that are assigned to each web image.

Otherwise, the image is excluded from the current training

iteration, because the image is too ambiguous. Furthermore,

case 1 requires ym = Rm1 or {ym 6= Rm1, Sm1 > ε}.
That it, the top ranked label either matches the web tag or is

sufficiently confident. Case 2 requires {ym 6= Rm1, Sm1 ≤ ε},
and k is the maximum value that satisfies Sm1−Smk < ε/k.

That is the top k labels have sufficiently close confidence. Our

method is summarized as Algorithm. 1.

IV. EXPERIMENTS

In this section, experiments are conducted on four classifi-

cation tasks, including skin diseases, dogs, food and indoor

scenes. The datasets and experimental setup are described

in Section IV-A and Section IV-B. In addition, we analyze

the quality of web data collected from different sources in

Section IV-C. The discussion of important parameters is shown

in Section IV-D, where we also evaluate the scale of clean

training data. Finally, we evaluate the effectiveness of our

method in Sections IV-E and IV-F.

A. Datasets

Following previous works on web data collection (Table I),

we crawl images from Google Images, Flickr and Twitter. We

show the total number of web images we collected for each



6 IEEE TRANSACTIONS ON IMAGE PROCESSING

Google Flickr Twitter

Fig. 4. Samples of collected web images of dogs (top), indoor scenes (middle) and skin diseases (bottom). All the images are retrieved by keyword search.
Images with red boxes indicate they are outliers, which are almost irrelevant with classification tasks.

target dataset in Table II, and plot the numbers of images

downloaded from different web sources in Fig. 3. In the

downloading process, We first collect images by keyword

search, where keywords correspond to the category labels

in the public datasets. Then, we download images from the

search results for the given class. Note that in our experiments

the test datasets remain the same as the standard datasets:

web images are only used for training. Meanwhile, to ensure

fair comparisons, we remove the web images which are near

duplicates of the images in the validation or the test sets.

Moreover, we observe that familiar objects are easier to find

and that these images contain less noise than uncommon things

such as skin diseases (Fig. 4). However, the skin disease

images may be more prone to tag errors, especially for data

from social network sites. Therefore, the data sources will

supply different quality of data for different tasks. In order

to verify the analysis above, we evaluate different sources in

Section IV-C.

B. Experiment Setup

Model. We mainly use four pre-trained models in the exper-

iments, i.e., AlexNet, CaffeNet, VGGNet and ResNet50, which

exhibit good performance on many classification tasks [2],

[47], fine-grained classification tasks [17], [48], [49], etc.

These models are pre-trained on ImageNet [5]. The software

package used in the experiments is Caffe [50]. Our models

are trained using NVIDIA TITAN X GPUs. We set the mini-

batch size to 64 for CaffeNet and AlexNet, 32 for VGGNet

and 12 for ResNet50. We initialize the learning rate to 0.001

for food and dog classification, and 0.0001 for skin disease

and indoor scene classification. The learning rate is reduced

by a factor of 10 after 10 epochs. We keep training the model

until convergence and set the max number of iterations to 40

epochs.

Label Ranking. We extract the features from fc8 layers of

the model for web images, which is a C-dimensional feature

vector representing the confidence of the predicted labels,
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Fig. 5. Quality comparison of data from different sources. The quality of each
category in the public datasets (Stanford Dogs, MIT Indoor67, Food-101 and
SD-198) is shown using pseudo color (blue to red indicating worst to best).
For indoor images, the confusion matrix of each source is visualized. These
pictures are drawn based on the basic model fine-tuned from the VGGNet.

where C is the number of categories, e.g., 120 for Stanford

Dogs. In addition, we choose 10% of images as the validation

data for each dataset, and set ε to the value of the classification

accuracy on the validation data.

C. Comparison of Different Data Sources

In this section, we investigate the relationship between the

target standard dataset and web sources. To evaluate the quality

of web data, we predict the labels of web images by using the

basic model M0 fine-tuned on the target data. The confusion

matrix between the predicted labels and web tags provides an

effective way to analyze the general quality of the collected

datasets. We draw the confusion matrix of the web tag and

predicted label on all the four tasks.

As shown in Fig. 5, We find that Google Images is generally

of higher quality than the other two sources for dog images.

This is probably because dog images from Flickr and Twitter

are more likely to contain objects related to dogs but not dogs

themselves, such as dog food and dog toys (see Fig. 4). The

quality of food images from Twitter and Flickr is similar to that

from Google Images due to the universality of food. According

to the observation, incorrect search results of food include

ingredients, menus, restaurants, etc. For the indoor dataset,

we show the confusion matrix of each source in Fig. 5, in

which Google Images is also of higher quality than Flickr and

Twitter. Although scenes are very common in daily life, the

indoor scene images from Flickr and Twitter are often selfies

where the major part of the images is covered by people.

The analysis is consistent with the typical examples presented

in Fig. 4, where indoor scene images sampled from Google

Images are better than the other two sources. Moreover, it is

TABLE III
COMPARISON OF DIFFERENT WEB SOURCES ON INDOOR, FOOD, AND SKIN

DISEASE DATASETS. WE DOWNLOAD IMAGES USING CLASS TAGS FROM

TARGET DATASETS AND FINE-TUNE THE MODEL FROM VGGNET

PRE-TRAINED ON IMAGENET. “ALL” MEANS IMAGES FROM ALL THE

THREE SOURCES ARE USED.

Tasks Google Flickr Twitter All

Indoor
# imgs 19,176 13,360 44,892 77,428

Acc (%) 72.09 71.19 70.90 72.01

Food
# imgs 64,444 100,314 75,311 240.069

Acc (%) 75.57 76.83 76.13 76.98

Skin

Disease

# imgs 74,774 4,273 6,171 85,218

Acc (%) 51.26 47.68 46.82 51.58
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Fig. 6. Classification accuracies (Acc) of different iterations. Web images
collected from Google are used to help with training of Resnet 50. “Num”
denotes the number of training images, “new data” indicates the web images
updated by the data sampling algorithm and one-to-many correction. “constant
data” indicates the images used in both the current and previous iterations.
The “outliers” are selected from the images which are included in the last
training iteration but excluded in the current iteration due to their relatively
low confidence scores.

worth noticing that Google Images obtains less noisy retrieval

results, especially in terms of outliers, which may benefit

from the pre-processing performed by Google Image Search.

Compared with the other two sources, the “good results”

obtained by Google can also bring better performance for

common classification tasks, e.g., food recognition in Table III.

However, the quality of the skin disease data from all the

three sources is not good, because skin disease recognition

needs more expert knowledge. Search engines may not process

the data of this kind of tasks well, since except for the noisy

labels, there are many outliers for skin diseases, which can be

seen in Fig. 4, e.g., drug advertisements, pathologic portrait

and posters of prevention campaigns, etc.

We also compare the web sources by fine-tuning VGGNet

using data of food, indoor and skin disease from the three

sources. Table III shows the results. When utilizing web

images for indoor scene classification, the accuracy of using

Google Images alone is higher than the results of using web

images from all the three sources, which indicates the negative
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Fig. 7. Feature embedding visualizations of Stanford Dogs using t-SNE [51]. The features are exacted from the validation set based on M0, M1, M2 and
M3, respectively.

TABLE IV
RECOGNITION ACCURACIES ON STANFORD DOGS + GOOGLE IMAGES

WITH DIFFERENT K USING VGGNET. K IS THE MAXIMUM NUMBER OF

ASSIGNED LABELS FOR EACH WEB IMAGE IN ONE-TO-MANY CORRECTION

AND K = 0 CORRESPONDS TO CASE 1 IN ONE-TO-ONE CORRECTION.
“NUM” MEANS THE NUMBER OF IMAGES USED FOR TRAINING.

“PERCENTAGE” REPRESENTS THE PERCENTAGE OF USED IMAGES w.r.t.

ALL THE WEB IMAGES. “NUM+” MEANS THE NUMBER OF IMAGES WITH

MORE THAN ONE LABELS PRESERVED.

K Num Percentage Num+ Acc (%)

0 6881 56.14 0 79.70

1 7020 57.28 0 80.23

2 8674 70.78 1654 82.47

3 9491 77.45 3288 82.39

4 9930 81.03 4650 82.43

5 10238 83.54 5837 81.98

effect of the other two sources of web data. The observations

above can provide valuable insights for research that intends

to employ web data for specific tasks. On the other hand, in

order to demonstrate the robustness of the proposed method on

processing and utilizing noisy web data, we employ all the web

images from different sources in the following experiments in

this paper.

D. Important Parameters and Evaluations

1) Parameter t of Iterations in Incremental Learning:

In this section, we discuss the impact of iterations t in the

proposed method. We use the basic model M0 to extract the

fc8 features for all web data as the initial confidence scores of

labels. To prevent over-fitting, we add some outliers in each

round, which have high confidence in the previous iteration,

but relatively low confidence in this round. The number of

iterations t in our experiments is determined by the amount

of updated data and the feedback (i.e., loss, accuracy) of the

training process.

In Fig. 6, we show the numbers of updated images as well

as the recognition accuracies for 10 iterations on the Stanford

Dogs, Food-101, Indoor-67 and SD-198 datasets. Take dog

recognition as an example, the performance is significantly

improved when a relatively large number of new images (red)

are selected and used for training. In later rounds, when fewer

new images are selected, the classification accuracy tends to be

stable. These results show that the proposed method is capable

of training a more accurate model from noisy data in 3–4
iterations. For the training process, except for M1 which is

trained in about 12h (hours), M2 and M3 only need about

6h−9h on ResNet50. In our work, we set t to 3 which provides

a good balance between accuracy and training efficiency.

Meanwhile, Fig. 7 visualizes the feature embedding of

the features from the validation set of Stanford Dogs based

on the model of different iterations. As can be seen, the

discriminative capability of the features from M0, M1, M2

and M3 becomes better gradually along with the iteration. It

is worth noting that the improvements are obvious for early

iterations, e.g., 1st and 2nd iterations. For later iterations,

e.g., the 3rd iteration, the change is limited due to fewer

selected new imaged. Overall, compared with the model M0,

the model after iterations has a more discriminative feature

space for classification.

2) Parameter K: In this section, we discuss the effect of

one-to-many correction for noisy web images. As previously

mentioned, there exist tag ambiguities of similar categories

for web images, so filtering and correcting web images by

comparing web tags with predicted labels will result in severe

information loss.

As shown in Fig. 6, in the iterative learning process, the

improvement of classification accuracy is proportional to the

change of training data. Using one-to-many correction instead

of one-to-one intensifies the change, which is effective for

model training. Table IV reports the effect of K on the

Stanford Dogs dataset. K = 0 corresponds to case 1 in one-to-

one correction, which is a strict constraint for selecting web

data and gets a worse result than relaxing the constraint by

adding case 2 in Eq. 5. As K increases, more training pairs

(images and their corresponding labels) are included, which in-

dicates that some web images attached with ambiguous labels

are identified which may carry useful information. However,

bigger K also means that more noise will be introduced.

We set K = 2 in our experiments based on the results in

Table IV for a good balance, which clearly outperforms one-

to-one correction (K = 1) and can reduce the influence of

hard label assignment.

3) Threshold ε in One-to-Many Correction: Threshold ε
is used to control the selection of “high-quality” web data

by comparing with the prediction results derived from the

basic model M0. There are several elements which need to

be considered when deciding ε: 1) if ε is set to a small value,
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TABLE V
PERFORMANCE ON DIFFERENT SCALES OF CLEAN TRAINING SET ON STANFORD DOGS. THE NUMBER OF TRAINING IMAGES IN EACH SCALE IS 120× i,

WHERE i = 1, 2 · · · , 10 (VERY SMALL SCALE); 20, 30, · · · , 90 (LARGER SCALE), IN WHICH i IS THE NUMBER OF IMAGES USED OF EACH CATEGORY.
THE EXPERIMENTS ARE CONDUCTED ON RESNET50.

i 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90

D+ft 16.35 30.76 39.78 50.49 55.72 59.91 62.24 63.52 66.30 66.85 73.02 74.75 77.15 77.98 78.21 78.79 78.87 79.47

D̂+ft 74.58 75.07 75.59 76.46 76.72 77.37 77.62 76.67 77.43 75.35 78.11 78.89 78.42 78.94 80.10 79.75 80.01 80.71

Ours 73.17 76.64 77.21 79.99 80.44 80.78 80.38 80.81 80.74 81.26 82.38 82.53 83.01 83.56 84.12 85.33 85.79 86.34
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Fig. 8. Effectiveness of the parameter ε on Google data based on VGGNet
in 1-st iterations. “Num” is the number of selected images by the progressive
filtering method when ε is set to different values. “Acc” is classification
accuracy on the validation set of the Stanford Dogs, Food-101, Indoor-67
and SD-198 dataset.

more training data will be used but the data is more noisy;

2) if ε is set to a large value, many images will be deleted,

but the training data contains less noise; 3) the reliability of

web label is related with the difficulty level of task, which

has been discussed in Section IV-C. Therefore, ε should be

a trade-off between the quantity and quality of the selected

web data. We evaluate the performance of our method with

changing ε in Fig. 8. As can be seen, the proposed method

is not sensitive to ε when the values of ε belongs to an

interval [ε∗ − δ, ε∗ + δ], 0 ≤ δ < 0.1 (ε∗ represents the

optimal solution). Meanwhile, we find from Fig. 8 that the

classification accuracy of the basic model on the validation

set is contained in the confidence interval (i.e., 0.7926, 0.7528,

0.7184 and 0.5247 for the four tasks, respectively). Therefore,

we set ε as the recognition performance on the validation data

to adapt to each specific task. This explains the setting of

parameter ε in Section III-A.

4) Evaluation of the scale of clean training data: Table V

shows the results that the initial model M0 is trained on

different amounts of training data from Stanford Dogs. As

can be seen, the proposed method will begin to bootstrap

the training when the clean training data increases slightly

(compared with one image per category). For the smallest scale

(120 images for dog recognition), it trains a basic model with

an accuracy of only 16.34%, i.e., the selection capability of

this model is very limited. Therefore, the performance of the

final model is largely decided by the distribution of web data

rather than the clean target data. Meanwhile, different tasks

have disparate properties and difficulties, so the initial amount

of training data can also be different. Based on these results,

we believe the proposed method can work effectively by using

limited images, e.g., fewer than 10 images per category, to

train M0, and this number of data is easy to collect in practice.

E. Analysis of Results for Different Tasks

In this section, we discuss the classification results on

different tasks. With the setup and the parameters illustrated

above, we conduct experiments on four datasets, and the

results are shown in Table VI. The results of basic models are

shown in Baseline, including models fine-tuned with clean data

and noisy web data, where the performance of the model with

web data is better than only using clean data except for skin

disease classification (#1 and #2). In particular, for skin disease

classification, the standard dataset is comparatively small and

the web skin disease images have more noisy labels than other

tasks. The accuracies of Dmix+ft are lower than using clean

data only on skin disease classification, which is consistent

with the analysis in Section IV-C and the information shown

in Fig. 3 and Fig. 4. For example, Fig. 4 shows the web skin

disease images from Flickr and Twitter. They have a higher

degree of label noise than other tasks, which results in lower

accuracy on Dmix + ft. Compared with skin diseases, the

quality of images from search engines and social network sites

for food and dogs is acceptable because they are more common

in daily life and people are also more willing to share this kind

of images on the Internet.

Furthermore, the improvement of accuracy against the base-

line for different tasks varies, e.g., the improvement on Alexnet

of skin diseases is around 4%, while for food classification, it

is near 10%. Meanwhile, the experimental results on food and

dogs conform to the expectation. For different models, adding

web images can improve the performance of the model (#2,

#13, #23 and #31 of food and dog). However, after simple

filtering [53], [54], the accuracy may be reduced (e.g., #14

and #32 of food, #24 of dog) because some useful images

are wrongly removed. For the dog dataset, the first round

filtering removes almost 40% web images, which contain

many useful images with abundant domain information. This

is also evidenced by results in the first two lines of Table IV, so

the classification accuracy becomes worse after filtering. The

proposed method can prevent the above case from happening

and the results (Baseline+) are better than Dfilter+ft. Since,

we employ a progressive filtering method to process web data
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TABLE VI
ACCURACIES (%) ON FOUR DATASETS WITH DIFFERENT METHODS. Dclean AND Dmix REPRESENT THE TARGET DATASET AND THE MIXED DATASET,

RESPECTIVELY. Dfilter DENOTES THAT THE WEB DATA IS FILTERED FROM Dmix . “FT” MEANS FINE-TUNING. IN THE LAST COLUMN, (+L-DOG) MEANS

THE USED WEB DATA IS L-DOG [11]. BASELINE+A INDICATES THAT PROGRESSIVE FILTERING IS EMPLOYED, AND +B SHOWS ONE-TO-MANY

CORRECTION IS USED (INSTEAD OF ONE-TO-ONE CORRECTION). “∗” IS OBTAINED BY EMPLOYING THE MODIFICATION OF DOMAIN ADAPTATION

MODEL [52] TO FURTHER REDUCE THE EFFECT OF DIFFERENT DATA DISTRIBUTION. HERE, WE REPLACE THE LOGISTIC REGRESSION LOSS WITH

SOFTMAX LOSS (THE LOG-LIKELIHOOD LOSS WITH BINOMIAL CROSS-ENTROPY RESPECTIVELY).

# Type Method Model
Test Accuracy

SD-198 Food-101 Dogs-120 Indoor-67 Dogs-120 (+L-Dog)

1

Baseline

Dclean+ft

Alexnet

50.85 65.93 63.57 65.52 63.57

2 Dmix +ft 42.71 69.71 65.63 69.63 64.84

3 Dfilter+ft 50.92 69.89 67.95 63.58 66.16

4

Previous work

Bottom-up [53] 44.26 70.29 72.17 64.18 71.59

6 Pseudo-label [54] 44.02 69.36 70.32 63.88 71.01

7 Weakly [55] 45.44 71.10 73.00 64.85 73.64

8

Ours

Baseline+A 52.76 73.81 72.30 69.63 71.42

9 Baseline+B 51.06 70.64 69.43 65.47 69.35

10 Baseline+A+B 53.46 73.78 73.99 70.30 73.20

11 Baseline+A+B+∗ 54.37 75.65 75.52 71.12 74.93

12

Baseline

Dclean+ft

Caffenet

51.34 66.61 63.19 65.22 63.19

13 Dmix +ft 44.74 69.25 66.08 67.99 65.34

14 Dfilter+ft 51.43 68.48 69.56 63.51 65.90

15

Previous work

Boosting [56] 45.99 72.53 73.49 65.60 73.28

16 PGM [17] 46.38 73.14 72.63 65.30 71.83

17 WSL [6] 46.99 73.21 73.52 65.60 73.79

18

Ours

Baseline+A 51.97 73.57 73.05 68.21 72.64

19 Baseline+B 51.55 71.13 72.34 65.45 71.22

20 Baseline+A+B 53.01 75.24 73.68 69.03 73.80

21 Baseline+A+B∗ 53.95 76.92 75.74 71.19 75.63

22

Baseline

Dclean+ft

VGGNet

55.19 74.32 78.29 71.79 78.68

23 Dmix +ft 51.58 76.98 81.03 72.01 77.54

24 Dfilter+ft 53.31 78.24 79.70 72.16 79.57

25 Previous work Harnessing [12] 54.50 79.02 78.45 70.00 78.31

26

Ours

Baseline+A 56.23 79.59 83.12 72.46 81.95

27 Baseline+B 55.47 78.71 82.47 72.24 80.66

28 Baseline+A+B 57.44 79.93 83.72 73.51 82.51

29 Baseline+A+B+∗ 59.66 81.32 84.36 75.97 83.75

30

Baseline

Dclean+ft

Resnet50

57.35 83.14 80.51 79.63 80.51

31 Dmix +ft 54.22 85.21 81.43 82.31 82.07

32 Dfilter+ft 63.49 86.10 82.62 81.34 83.61

33 Previous work Goldfince [11] 65.74 86.75 85.90 83.43 85.48

34

Ours

Baseline+A 65.67 88.58 84.57 82.54 84.57

35 Baseline+B 64.19 86.47 83.26 82.24 83.93

36 Baseline+A+B 67.25 88.96 85.93 83.58 85.69

37 Baseline+A+B+∗ 70.56 89.77 87.36 84.78 86.94

iteratively, the useful images have more chances to be chosen,

and the model will be more robust to noise.

In contrast to dog images which have specific objects,

indoor scene images have a wide variety of content which

often contain salient people and other obstructions in the

center of the images, so it is difficult to improve the perfor-

mance of recognition with typical filtering strategies [53], [54].

However, the proposed algorithm can boost the classification

accuracy on the indoor scenes dataset. As shown in Table VI,

our method achieves an accuracy of 84.78%, outperforming

other methods. Since the challenging data will be added

gradually, the learned model can recognize complex scenes

increasingly.

Finally, in order to verify the robustness of our method, we

also conduct experiments on the L-Dog dataset [11], which

is a publicly available noisy dataset for dog recognition. Note

that, we only use a subset of L-Dog dataset, in which the

categories are the same with the Stanford Dogs dataset. The

results are consistent with those of our collected web data.

Moreover, no matter which deep model (AlexNet, CaffeNet,

VggNet, ResNet) is employed, the proposed algorithm shows

its superiority consistently.

F. Comparison with the State-of-the-Art

In Table VII, we compare the proposed method with other

state-of-the-art approaches. The proposed method performs

favorably against other methods on different tasks. Specifi-

cally, for dog recognition, [11] employs multiple crops and
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TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS (INCLUDING THOSE USING WEB DATA, e.g., [11]) ON FOUR PUBLIC DATASETS. BOLD VALUES

CORRESPOND TO THE BEST ACCURACY (%) FOR EACH DATASET.

SD-198 Food-101 Stanford Dogs MIT Indoor

Method Acc (%) Method Acc (%) Method Acc (%) Method Acc (%)

Caffe [43] 42.31 Random Forest [45] 50.76 NAC [57] 68.61 IFV+DMS [58] 66.87

VGG [43] 37.91 SNN [59] 69.90 FoF-Weakly [60] 71.40 FB/REF [12] 61.60

Caffe+ft [43] 46.69 DCNN [45] 56.40 PDFS [61] 71.96 CL-45C [62] 68.80

VGG+ft [43] 50.27 CNNFM [63] 58.49 FB/REF [12] 73.10 MLVED [64] 69.69

NPT [65] 52.19 DCNN+ft [45] 68.44 FOAF+ft [66] 74.49 Hybrid-CNN [67] 70.80

CSDR [68] 56.47 PTFT [69] 70.41 MagNet [70] 75.10 CNN+G [64] 70.46

Ours (Resnet50) 70.56 Im2Calories [71] 79.00 RED-OSSVR(vs) [72] 79.50 S-NN [59] 72.20

ResNet50+ft 84.31 Weakly-S [73] 80.43 SFV [74] 72.86

ResNet110+ft 84.88 Inception-v3 [11] 80.60 MPP+DSFL [75] 80.78

Inception-v3 [76] 88.28 Goldfince [11] 85.90 Double fully hybrid [77] 80.97

Ours (Resnet50) 89.77 Ours (Resnet50) 87.36 Ours (Resnet50) 84.78

(a) (b)

(c) (d)

Fig. 9. Examples from four dog categories. The images in the same red rectangle are samples misclassified by prior work [11]. With the help of noisy web
data, our proposed method can distinguish images from classes (a) and (b). However, we fail to recognize the dogs from classes (c) and (d) because none of
the collected noisy data looks like the test images.

a much larger web dataset (both in terms of category and

image numbers). Our method does not require additional

categories while improves the accuracy by about 1.5% com-

pared with [11] (from 85.90% to 87.36%). Fig. 9 shows the

examples misclassified by [11] and correctly recognized by

our method. Since the web images sampled by the proposed

method can cover the characteristics of both categories, the

trained model can recognize the images with the similar

appearance by exploiting web data. Overall, these results

indicate that progressive filtering and one-to-many correction

are effective in extracting meaningful information from web

data to improve the performance of CNN models.

V. CONCLUSIONS

In this paper, we present a novel progressive filtering

method that effectively exploits web images for various image

classification tasks. Moreover, a one-to-many label assignment

strategy is employed for data correction based on the confi-

dence values of labels and the tags of images. The method

performs well in a variety of image classification tasks and

the results are competitive to the state of the art.
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