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Abstract—Leveraging the abundant number of web data is a
promising strategy in addressing the problem of data lacking
when training convolutional neural networks (CNNs). However,
web images often contain incorrect tags, which may compromise
the learned CNN model. To address this problem, this paper
focuses on image classification and proposes to iterate between
filtering out noisy web labels and fine-tuning the CNN model
using the crawled web images. Overall, the proposed method
benefits from the growing modeling capability of the learned
model to correct labels for web images and learning from such
new data to produce a more effective model. Our contribution is
two-fold. First, we propose an iterative method that progressively
improves the discriminative ability of CNNs and the accuracy of
web image selection. This method is beneficial towards selecting
high-quality web training images and expanding the training
set as the model gets ameliorated. Second, since web images
are usually complex and may not be accurately described by
a single tag, we propose to assign a web image multiple labels
to reduce the impact of hard label assignment. This labeling
strategy mines more training samples to improve the CNN model.
In the experiments, we crawl 0.5 million web images covering all
categories of four public image classification datasets. Compared
with the baseline which has no web images for training, we show
that the proposed method brings notable improvement. We also
report competitive recognition accuracy compared with the state
of the art.

Index Terms—Noisy web data, CNN, Progressive Filtering,
Multiple Labels

I. INTRODUCTION

HE success of convolutional neural networks (CNNs)

is owing to sufficient labeled training data. However,
labeling millions of images manually is very time-consuming
and laborious, which can be practically impossible for many
problems where a high level of expertise is needed. Lack of
data is arguably the most significant obstacle to developing
deep models for new tasks, so it is highly desirable and
sometimes even necessary to train an effective CNN model
with limited well-labeled data. To tackle this problem, some
works [1], [2] consider the transferability of CNNs. They ini-
tialize parameters with a pre-trained model (e.g., AlexNet [3],
VGGNet [4] etc.) on the large-scale dataset ImageNet [5], and
then fine-tune the model on the specific dataset. Meanwhile, as
an alternative approach, some recent works [6], [7] have shown
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Fig. 1. Examples of the Food-101 dataset (left) and noisy web data (right)
from the classes ice cream and frozen yogurt. On the left are images from
the public dataset, and the right shows the images collected from the web by
searching with the category names, listed in the decreasing order of reliability.
We observe that images in the two middle columns of the web images
are ambiguous w.rt. their categories, and those in the rightmost column are
outliers.

that fine-tuning a CNN model with extensive web data can
be more effective than fine-tuning it merely on a small-scale
clean dataset. Such works harvest images from the Internet and
associate them with labels either from the keywords originally
used for retrieval or tags extracted from their description texts.

The major challenge of using web data is two-fold: given a
corpus of web data, it is critical to retrieve images and their
tags 1) accurately and 2) as many as possible. Without doing
so, the selected web data may not accurately reflect the image
content or have a limited number. The two challenges arise
from the fact that web images have complex content and that
the data distribution of web images can be distinct from the
target dataset.

On the one hand, the content of web images is usually
complex. Given its complex nature, it is likely that an image
description does not accurately reflect the true content of
the image [8]-[10]. For example, as demonstrated in Fig. 1,
it poses difficulties to tell whether an image contains an
ice cream or a frozen yogurt. In response to the inaccurate
tags, Krause et al. [11] remove images that appear in search
results for more than one category to reduce the effect of
noise. Vo et al. [12] filter images by ranking the predicted
results of classifiers trained on features exacted from a CNN.
Nevertheless, such methods do not consider the complex



relationships between the tag and the content of web images.
Specifically, real-world images contain richer content than
images from public datasets. Therefore, a single tag may not
be able to sufficiently describe the information of an image
or the object related to the target task, especially when the
image contains objects of multiple similar categories at the
same time. However, since the label of real-world images is
difficult to distinguish, forcing a single label loses potentially
useful information, especially when the probabilities of an
image belonging to multiple categories are similar.

On the other hand, the data distribution of web images can
be so different from the target dataset that the basic model
trained from the well-labeled target data makes incorrect
predictions on the web data. When prediction error happens,
the corresponding web data should be discarded to prevent
error propagation. Meanwhile, without addressing the data
distribution problem, it is the easier training samples that are
more likely to be selected; the challenging training samples
which are more useful for model robustness may well be
missing, no matter how large the volume of the web data is.
Therefore, the challenge of different data distributions may
impair the full utilization of web data. In the literature, in an
attempt to address this problem, a fine-tuning process can be
conducted on the web data [6], [7]. This strategy however does
not directly address the transfer problem [13] and thus does
not make full use of the web data.

In light of the above discussions, this paper introduces
a progressive learning approach to selecting possibly many
web images with accurate labels. First, to address the data
distribution gap, we propose to iterate between classifier fine-
tuning and web tag estimation. Usually, model performance
tends to improve with an increasing amount of training data.
However, if we add a large volume of web data directly into
well-labeled data to train a CNN model, the model will fit
better with the large amount of web data rather than the well-
labeled target dataset due to their different distributions [13].
In this paper, we first incorporate “high-quality” web data
selected by the basic model in the training set to fine-tune
the CNN model. Then, the fine-tuned model is in turn used
to select web data. This process is applied iteratively. In the
beginning, a few easy samples are selected from the web data.
As the iterations progress, the CNN model grows stronger
and more diverse and challenging web data can be selected,
which further contributes to model refinement. In other words,
compared with a static model, our model is refined iteratively
with the filtered web data, and the model in turn provides a
more reliable judgment for web data selection. Therefore, web
data can be better utilized for CNN training.

Second, to address the problem of tag noise, we assign
multiple labels to a web image to reduce the impact of hard
label assignment. Specifically, given a web image, up to K
class labels with the highest prediction scores are assigned to
this image. If such labels have the similar confidence or if
the label with the highest score is consistent with the original
web tag of the image, we select this image as a new training
sample. Experimental results indicate that, by using web data
effectively, our method improves the recognition accuracy of
CNN models effectively.
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In summary, this paper claims three contributions.

e We propose an iterative filtering method that progres-
sively learns from web data to improve the performance
of CNN model.

o Instead of hard label assignment, images are assigned
with multiple labels, which increases the recall of web
training data selection.

o« We have collected four web image datasets in corre-
spondence to four public classification tasks. Extensive
experiments demonstrate that our method yields com-
petitive recognition accuracy against the state-of-the-art
approaches.

II. RELATED WORK
A. Deep Learning from Web Data

The training of deep models requires a large amount of
well-labeled data, but they are generally expensive to obtain.
To address this problem, recent works consider learning from
web data, which is relatively convenient to obtain and contains
a considerable level of visual information.

In this area, impressive improvement has been observed [6],
[11], [12], [14]-[17]. For web data collections, Chen et al. [14]
use a semi-supervised learning algorithm to find the relation-
ships between common sense and labeled images of given
categories. Schroff et al. [16] propose an automatic method
for gathering hundreds of images for a given query class.
These two works try to build visual datasets with minimum
human effort, but the resulting datasets contain noisy labels.
Meanwhile, the introduction of web data also improves the
performance of deep models, which is verified by recent
work [18]. To scale up to ImageNet-sized problems, Izadinia
et al. [19] perform direct learning from image tags in the
wild and achieve improved performance. Chen and Gupta [6]
present a two-stage approach to training deep models by
exploiting both noisy web data and the transferability of CNN.
Alternatively, Xiao et al. [17] use a probabilistic framework to
model the relationships among images, clean labels and noisy
labels, and then train a model in an end-to-end structure. In
addition, Krause et al. [11] download images from Google to
form training sets for different tasks and filter such data with
the human in the loop. They demonstrate the effectiveness
of using noisy web data and the benefits of performing extra
operations on noisy data, e.g., filtering.

In this work, we also use web data for CNN training but
we design a progressive learning framework. With reliable
web data incrementally added, the classification capability of
the learned model gradually improves. In the meantime, the
improved model provides more robust and accurate predictions
for web data. Further, in web data selection, we replace
the previous one-to-one label assignment with a one-to-many
strategy. This method aims to obtain more challenging and
diverse training data from web images to train discriminative
CNNEs.

B. Progressive Learning

The strategy of progressive learning has been used in data
mining [20], pattern recognition [21], computer vision [22]-
[24], etc. When training data increases gradually, a progressive
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learning method allows the data analysis systems to have the
capability to learn progressively when new data is needed.
Meanwhile, it is natural that knowledge is taught from easy to
difficult in the form of a curriculum, leading to a learning
paradigm called curriculum learning [25]. Later, self-paced
learning [26] is proposed to embed easiness identification into
the learning objective of curriculum learning.

This progressive paradigm has been used in many tasks. For
example, Ma et al. [27] propose an alternative optimization
process for an optimization model of self-paced curriculum
learning, which effectively improves the standard co-training
algorithm. Dong et al. [28] propose a method that iterates
between model training and high-confidence sample selection,
which obtains improvement in few-shot object detection. Fan
et al. [23] improve the person re-identification [29] results
by using a progressive method to train and rectify the model
representation and clustering alternately. The iterative learning
scheme has also been used in previous works for image
clustering, in which the model is trained iteratively between
clustering and representation learning [30]-[32]. For example,
Yang et al. [30] learn representations and image clusters
from an unlabeled image set, and optimize the two tasks
iteratively. The two tasks interact with each other and are im-
proved simultaneously, which results in a better unsupervised
representation and well-separated clusters. Chang et al. [32]
use Deep Adaptive Clustering to calculate the similarities of
pairwise images based on the feature from a CNN, sample
similar images, and then train the CNN by using the selected
samples to improve the representation performance.

Inspired by the thought of iterative optimization and in-
cremental improvement, the proposed progressive filtering
approach exploits the relationship between the training of
the model and distinguishing of noisy web data to gradually
learn from the selected reliable web data. Different from
these methods for image clustering, the proposed method not
only needs to select reliable training data, but also needs to
handle the content complexity of web images and the different
data distributions during training. In general, each iteration of
progressive learning can be treated as an optimization problem
with the weights of the model updated as new data is fed in.
In this work, we employ progressive learning to improve the
performance of a CNN model when using web images with
noisy tags. In each iteration, the recognition performance of
the model is first improved by selected web data. Then, we
utilize the recognition power of the progressively enhanced
model to filter and correct web data, which contains new
information and can be seen as “new data”, although some of
these images may have already been seen by the model. This
method is more efficient than offline learning based methods
where the entire set of web images is used to train the CNN
model.

C. Web Datasets

Based on well-labeled visual datasets, several representative
web image datasets have been established, which are sum-
marized in Table I, in which the publicly available datasets
are shown in bold. To meet the demand of different tasks,

TABLE I
SOME EXISTING WEB DATASETS. THEY ARE COLLECTED FROM DIFFERENT
SOURCES AND USED FOR CNN TRAINING. NOTE THAT THE YOUTUBE-8M
DATASET IS COLLECTED FROM 8 MILLION URLS AND CONTAINS 1.9
BILLION VIDEO FRAMES.

Dataset Year #imgs  Source
Flickr-CIFAR [15] 2014 230173  Flickr

Flickr [6] 2015 1.2M Flickr

Google [6] 2015 1.5M Google
YFCC100M [19] 2015 99.3M  Flickr
Clothing [17] 2015 100000  Shopping sites
Sketch [33] 2016 191067 Google
Openimages [34] 2016 9.0IM  Google
M-Flower-620 [35] 2016 20211 Instagram
YouTube-8M [36] 2016 19B YouTube
Weakly (Bird) [37] 2016 200000  Flickr
Goldfince [11] 2016 9.8M Google
Flickr-Bing 100 [12] | 2017 416000 Flickr & Bing
Flickr-Bing 1K [12] 2017  3.12M Flickr & Bing

these datasets are collected with various scales from different
web sources, e.g., Flickr, Instagram, efc. Krause et al. [11]
collect datasets from Google Images and conduct two rounds
of cleaning: active learning and human in the loop. Xiao et
al. [17] establish a clothing dataset by searching images from
shopping websites, which has both noisy labels and clean
labels obtained by manual refinement. Xu et al. [37] use
200 bird species (CUB-200-2011) as keywords and download
the top 100 images of search results. Web data collection
is related to the technique of image retrieval [38]-[41], but
the existing engines are mainly based on traditional keyword
search techniques. Similar collection methods are also used in
works [12], [19], [35], [36], [42] which utilize web data for
specific tasks.

In our work, to analyze the application of web data for
classification tasks, we collect four new web datasets from
a different perspective. We extend some manually labeled
datasets with web data from Google Images, Flickr and
Twitter, which cover classification tasks of a diverse range
of targets, including objects (food and dog), scenes, and skin
diseases. According to our observation, different resources
(search engines, social network sites, specific web pages)
have images with different characteristics. Therefore, web
data from a specific web source may be more suitable for
certain tasks than others. This observation will be evaluated
in our experiment, which also demonstrates that different data
distributions exist not only in target and web data, but also in
different web resources. Furthermore, our method can suppress
the impact of the different data distributions by progressive
learning from web data.

III. METHOD

In this work, our goal is to effectively utilize easily obtained
web images with noisy labels to train a CNN model for image
classification.

We start our method with the traditional CNN fine-tuning
process. Given a clean target dataset D = {(x,,,yn)}_;, we
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Fig. 2. Pipeline of the proposed progressive learning method, which includes two major steps, namely data sampling and model updating. For data sampling,
we obtain P(y|x), score matrix S and label matrix R of web data based on model M;_1, and use such information to obtain the dataset Dy_1 through
a sampling scheme. Here, one to one and one to many are two types of label sampling strategies. For model updating, model M is initialized with the
parameters of My_1 and updated on the combined dataset D;_1 in the ¢-th iteration.

denote each data point as a D-dimensional vector z, € R”,
and its label as y,, € {1,2,---,C}. Here, N indicates the size
of dataset D, and C' denotes the number of categories. We
first train a CNN model M, : f(z;0) € RC using the clean
dataset D, where 6 represents the set of model parameters.
Usually, 8 in M, is initialized with a set of weights 8. from
a pre-trained model M,,., and then updated using stochastic
gradient descent (SGD). As mentioned above, the data volume
in D may be limited, so we employ a web dataset D to
improve the CNN model. The iteration of SGD updates current
parameters 0* as:

0" =0+ (D

Z Ve [L(z,y)],

(w,y)EDb

where L(x,y) is a loss function, e.g., softmax. \/g is computed
by gradient back-propagation. D° is a mini-batch randomly
drawn from the training dataset D, and 7 is the learning rate.

A. Progressive Learning from Noisy Web Labels

The noisy dataset D = {(wm,ym)}ﬂf:l contains im-
age/label pairs: the m-th image x,,, and its corresponding web
tag y,,. Here, M indicates the size of D. Fig. 2 shows the
pipeline of our method, consisting of the following two major
steps:

Web data selection for CNN training. In our method,
we first select images with reliable tags to train our model,
by utilizing the confidence of the tags. Specifically, given
an instance x and the set of labels I = [1,2,---,C], the
confidence for each label is p(l;|z),i = .,C, where
a higher probability corresponds to higher confidence. We
use this information to select and correct labels for web
images. Methods that can be used to estimate p ({;|) include
SVM, softmax, Bayes classifiers, efc. Considering the high

discriminative ability of deep features, we use a softmax
function to generate the probability for each web image x,,:

eeisz

plilem) = @

; 69;— Tom
Then, we obtain the confidence scores for the C' categories
8m = {p(li|rm)},, and rank s, in descending order. We
also record the labels 7, corresponding to s,. For the web
dataset D, we obtain its score matrix S={s,,}}_,, and the
corresponding label matrix R = {r,,, }2_,.

For a web image x,, with tag y,,, if the predicted label is
the same as the web tag, the web tag is preserved and z,, is
selected for CNN training. Under the circumstance where the
predicted label is different from the web tag, if the prediction
confidence is higher than a threshold, we use the predicted
label to replace the web tag, and x,, is selected for CNN
training. Otherwise, x,, is rejected for training. As such, the
corrected label 7, is determined by

Ym, m = le
gm = lea Ym 7é lea Sml > (3)
Q, otherwise

where € is a threshold for label correction, and R,,; is the
label with the largest confidence score S,,;. In our experi-
ments, ¢ is set to the classification accuracy on the validation
dataset (see discussions in Section IV-D). ¥ = ) means that
the image will not be used for training, because it is considered
as unreliable data. We employ Eq. 3 to select images for CNN
fine-tuning.

Model updating. The progressive learning will update
the model when new data is added. In the ¢-th iteration of
our progressive learning, we initialize the weights of M,
on the model M;_; and train M, on the mixed dataset
Dt 1 =DU Dt 1, where D = {(z,,,yn)})_, is the clean
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Algorithm 1 Progressive Learning from Web Data
Input:
Clean dataset: D = {(n, yn) }A_1;
The noisy web dataset: D = {(x,, ym)}%:ﬁ
The initialized network model M. : f(x;Opre) € RC.
Fine-tune a CNN model M based on M, using D;
Calculate S and R for D using model M, with Eq. 2;
Update D to obtain D, with Eq. 5;
t<+— 0;
repeat
t+—t+1;
repeat
Update parameters 6; with Eq. 4 on each mini-batch
Db, D=DUD; i;
9:  until loss function L(z,y) has converged.
10 Obtain model M,; _
11:  Calculate S and R for D using M; based on Eq. 2;
12:  Update the dataset D to obtain D; with Eq. 5;
13: until D, tends to be stable or the performance of M, does
not improve.
Output:
The trained model: M, : f(z;6;) € R®.

A A R ol s

dataset, Dy_1 = {(zm, ﬂm)}%":‘f is the sampled web dataset
of (t—1)-th iteration and M;_; denotes the size of D;_1. The

parameters 8; of the model M, is updated as follows,

! Z Ve, [L(J?, y)} ) “4)

0; =6, +7- —
‘Dt—l (.4)€P?_,

where 0; is initialized with the weights 6;_; of the model
M;_1. The training of the model will be finished when
the model is converged. Specifically, the iterative process of
progressive learning repeats until either updated dataset D, is
stable or the model M is not improved compared with M;_1.

B. One-to-Many Correction for Noisy Labels

As mentioned in Section I, the content of web images is
usually complex. As illustrated at the bottom of Fig. 2, a
web image may contain multiple objects and the categories
of these objects are hard to disambiguate. Previous works
usually employ a one-to-one label assignment for web images
and select those images whose tag equals their assigned label.
However, one-to-one label assignment and comparison only
compare the image tag y,, with the top ranked label to
obtain the final label, which may be inaccurate or may lose
useful domain information for classification. To address this
challenge, we replace the label assignment method of Eq. 3
with one-to-many label assignment,

R,.1, case 1
Um = {Rmi}r,, case 2 (3)
D, otherwise

where k denotes the number of labels that are assigned to
Zy,. The situation belongs to case 1 or case 2 if and only

TABLE II
STATISTICS OF THE TARGET AND WEB DATASETS. C' IS THE NUMBER OF
CLASSES. “TR/TE” DENOTES THE NUMBERS OF TRAINING AND TEST
IMAGES IN EACH TARGET DATASET. WEB DATA REFERS TO THE IMAGES
COLLECTED FROM THE INTERNET.

Target Data Web Data
Dataset = -
C # imgs tr/te # imgs
3,292
D-1 4 1 4 ’ 2,684
S 98 [43] 98 6,58 3292 82,68
12,000
12 20, ’ 2,11
Stanford Dogs [44] 0 0,580 8.580 5 5
75,750
Food-101 [45 101 101,000 ’ 240,096
o0 [43] ’ 25,250 :
5,360
MIT Indoor67 [46] 67 15,620 ’ 76,907
1,340
x103
120 H Clean
100 u Flickr
80 = Google
Twitter
E 60
b4
40
20
. 5 | Al
SD-198 Stanford Dogs Food-101 MIT Indoor67
Fig. 3. Numbers of images collected from different sources, i.e., Flickr,

Google and Twitter. “Clean” is the data of the standard dataset.

if k satisfies the constraint £k < K, where K is the maxi-
mum number of labels that are assigned to each web image.
Otherwise, the image is excluded from the current training
iteration, because the image is too ambiguous. Furthermore,
case 1 requires y,, = Ry1 or {ym # Ry, S > €}
That it, the top ranked label either matches the web tag or is
sufficiently confident. Case 2 requires {y,, # Rpm1, Sm1 < €},
and k is the maximum value that satisfies S;,1 — Sy < €/k.
That is the top k labels have sufficiently close confidence. Our
method is summarized as Algorithm. 1.

IV. EXPERIMENTS

In this section, experiments are conducted on four classifi-
cation tasks, including skin diseases, dogs, food and indoor
scenes. The datasets and experimental setup are described
in Section IV-A and Section IV-B. In addition, we analyze
the quality of web data collected from different sources in
Section IV-C. The discussion of important parameters is shown
in Section IV-D, where we also evaluate the scale of clean
training data. Finally, we evaluate the effectiveness of our
method in Sections IV-E and IV-F.

A. Datasets

Following previous works on web data collection (Table I),
we crawl images from Google Images, Flickr and Twitter. We
show the total number of web images we collected for each
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Google

Flickr

Twitter

Fig. 4. Samples of collected web images of dogs (top), indoor scenes (middle) and skin diseases (bottom). All the images are retrieved by keyword search.
Images with red boxes indicate they are outliers, which are almost irrelevant with classification tasks.

target dataset in Table II, and plot the numbers of images
downloaded from different web sources in Fig. 3. In the
downloading process, We first collect images by keyword
search, where keywords correspond to the category labels
in the public datasets. Then, we download images from the
search results for the given class. Note that in our experiments
the test datasets remain the same as the standard datasets:
web images are only used for training. Meanwhile, to ensure
fair comparisons, we remove the web images which are near
duplicates of the images in the validation or the test sets.
Moreover, we observe that familiar objects are easier to find
and that these images contain less noise than uncommon things
such as skin diseases (Fig. 4). However, the skin disease
images may be more prone to tag errors, especially for data
from social network sites. Therefore, the data sources will
supply different quality of data for different tasks. In order
to verify the analysis above, we evaluate different sources in
Section IV-C.

B. Experiment Setup

Model. We mainly use four pre-trained models in the exper-
iments, i.e., AlexNet, CaffeNet, VGGNet and ResNet50, which
exhibit good performance on many classification tasks [2],
[47], fine-grained classification tasks [17], [48], [49], etc.
These models are pre-trained on ImageNet [5]. The software
package used in the experiments is Caffe [50]. Our models
are trained using NVIDIA TITAN X GPUs. We set the mini-
batch size to 64 for CaffeNet and AlexNet, 32 for VGGNet
and 12 for ResNet50. We initialize the learning rate to 0.001
for food and dog classification, and 0.0001 for skin disease
and indoor scene classification. The learning rate is reduced
by a factor of 10 after 10 epochs. We keep training the model
until convergence and set the max number of iterations to 40
epochs.

Label Ranking. We extract the features from fc8 layers of
the model for web images, which is a C'-dimensional feature
vector representing the confidence of the predicted labels,
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Fig. 5. Quality comparison of data from different sources. The quality of each
category in the public datasets (Stanford Dogs, MIT Indoor67, Food-101 and
SD-198) is shown using pseudo color (blue to red indicating worst to best).
For indoor images, the confusion matrix of each source is visualized. These
pictures are drawn based on the basic model fine-tuned from the VGGNet.

where C' is the number of categories, e.g., 120 for Stanford
Dogs. In addition, we choose 10% of images as the validation
data for each dataset, and set ¢ to the value of the classification
accuracy on the validation data.

C. Comparison of Different Data Sources

In this section, we investigate the relationship between the
target standard dataset and web sources. To evaluate the quality
of web data, we predict the labels of web images by using the
basic model M fine-tuned on the target data. The confusion
matrix between the predicted labels and web tags provides an
effective way to analyze the general quality of the collected
datasets. We draw the confusion matrix of the web tag and
predicted label on all the four tasks.

As shown in Fig. 5, We find that Google Images is generally
of higher quality than the other two sources for dog images.
This is probably because dog images from Flickr and Twitter
are more likely to contain objects related to dogs but not dogs
themselves, such as dog food and dog toys (see Fig. 4). The
quality of food images from Twitter and Flickr is similar to that
from Google Images due to the universality of food. According
to the observation, incorrect search results of food include
ingredients, menus, restaurants, etc. For the indoor dataset,
we show the confusion matrix of each source in Fig. 5, in
which Google Images is also of higher quality than Flickr and
Twitter. Although scenes are very common in daily life, the
indoor scene images from Flickr and Twitter are often selfies
where the major part of the images is covered by people.
The analysis is consistent with the typical examples presented
in Fig. 4, where indoor scene images sampled from Google
Images are better than the other two sources. Moreover, it is

TABLE III
COMPARISON OF DIFFERENT WEB SOURCES ON INDOOR, FOOD, AND SKIN
DISEASE DATASETS. WE DOWNLOAD IMAGES USING CLASS TAGS FROM
TARGET DATASETS AND FINE-TUNE THE MODEL FROM VGGNET
PRE-TRAINED ON IMAGENET. “ALL” MEANS IMAGES FROM ALL THE
THREE SOURCES ARE USED.

1202

Tasks Google  Flickr ~ Twitter All
# imgs 19,176 13,360 44,892 77,428
Indoor
Acc (%) 72.09 71.19 70.90 72.01
Food # imgs 64,444 100,314 75,311  240.069
Acc (%) 75.57 76.83 76.13 76.98
Skin # imgs 74,774 4,273 6,171 85,218
Disease | Acc (%) 51.26 47.68 46.82 51.58
==new data™ constant data== outliers =*~acc x10? ==new data == constant data= outliers -s-acc x10°
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Fig. 6. Classification accuracies (Acc) of different iterations. Web images
collected from Google are used to help with training of Resnet 50. “Num”
denotes the number of training images, “new data” indicates the web images
updated by the data sampling algorithm and one-to-many correction. “constant
data” indicates the images used in both the current and previous iterations.
The “outliers” are selected from the images which are included in the last
training iteration but excluded in the current iteration due to their relatively
low confidence scores.

worth noticing that Google Images obtains less noisy retrieval
results, especially in terms of outliers, which may benefit
from the pre-processing performed by Google Image Search.
Compared with the other two sources, the “good results”
obtained by Google can also bring better performance for
common classification tasks, e.g., food recognition in Table III.

However, the quality of the skin disease data from all the
three sources is not good, because skin disease recognition
needs more expert knowledge. Search engines may not process
the data of this kind of tasks well, since except for the noisy
labels, there are many outliers for skin diseases, which can be
seen in Fig. 4, e.g., drug advertisements, pathologic portrait
and posters of prevention campaigns, efc.

We also compare the web sources by fine-tuning VGGNet
using data of food, indoor and skin disease from the three
sources. Table III shows the results. When utilizing web
images for indoor scene classification, the accuracy of using
Google Images alone is higher than the results of using web
images from all the three sources, which indicates the negative
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Fig. 7. Feature embedding visualizations of Stanford Dogs using t-SNE [51]. The features are exacted from the validation set based on Mg, M1, M2 and

M3, respectively.

TABLE IV
RECOGNITION ACCURACIES ON STANFORD DOGS + GOOGLE IMAGES
WITH DIFFERENT K USING VGGNET. K IS THE MAXIMUM NUMBER OF
ASSIGNED LABELS FOR EACH WEB IMAGE IN ONE-TO-MANY CORRECTION
AND K = 0 CORRESPONDS TO CASE | IN ONE-TO-ONE CORRECTION.
“NUM” MEANS THE NUMBER OF IMAGES USED FOR TRAINING.
“PERCENTAGE” REPRESENTS THE PERCENTAGE OF USED IMAGES w.r.t.
ALL THE WEB IMAGES. “NUM+" MEANS THE NUMBER OF IMAGES WITH
MORE THAN ONE LABELS PRESERVED.

K Num Percentage ~ Num+- Acc (%)
0 6881 56.14 0 79.70
1 7020 57.28 0 80.23
2 8674 70.78 1654 82.47
3 9491 77.45 3288 82.39
4 9930 81.03 4650 82.43
5 10238 83.54 5837 81.98

effect of the other two sources of web data. The observations
above can provide valuable insights for research that intends
to employ web data for specific tasks. On the other hand, in
order to demonstrate the robustness of the proposed method on
processing and utilizing noisy web data, we employ all the web
images from different sources in the following experiments in
this paper.

D. Important Parameters and Evaluations

1) Parameter t of Iterations in Incremental Learning:
In this section, we discuss the impact of iterations ¢ in the
proposed method. We use the basic model M, to extract the
fc8 features for all web data as the initial confidence scores of
labels. To prevent over-fitting, we add some outliers in each
round, which have high confidence in the previous iteration,
but relatively low confidence in this round. The number of
iterations ¢ in our experiments is determined by the amount
of updated data and the feedback (i.e., loss, accuracy) of the
training process.

In Fig. 6, we show the numbers of updated images as well
as the recognition accuracies for 10 iterations on the Stanford
Dogs, Food-101, Indoor-67 and SD-198 datasets. Take dog
recognition as an example, the performance is significantly
improved when a relatively large number of new images (red)
are selected and used for training. In later rounds, when fewer
new images are selected, the classification accuracy tends to be
stable. These results show that the proposed method is capable

of training a more accurate model from noisy data in 3—4
iterations. For the training process, except for M7 which is
trained in about 12h (hours), M5 and M3 only need about
6h—9h on ResNet50. In our work, we set ¢ to 3 which provides
a good balance between accuracy and training efficiency.

Meanwhile, Fig. 7 visualizes the feature embedding of
the features from the validation set of Stanford Dogs based
on the model of different iterations. As can be seen, the
discriminative capability of the features from Mg, M1, My
and M3 becomes better gradually along with the iteration. It
is worth noting that the improvements are obvious for early
iterations, e.g., 1st and 2nd iterations. For later iterations,
e.g., the 3rd iteration, the change is limited due to fewer
selected new imaged. Overall, compared with the model M,
the model after iterations has a more discriminative feature
space for classification.

2) Parameter K: In this section, we discuss the effect of
one-to-many correction for noisy web images. As previously
mentioned, there exist tag ambiguities of similar categories
for web images, so filtering and correcting web images by
comparing web tags with predicted labels will result in severe
information loss.

As shown in Fig. 6, in the iterative learning process, the
improvement of classification accuracy is proportional to the
change of training data. Using one-to-many correction instead
of one-to-one intensifies the change, which is effective for
model training. Table IV reports the effect of K on the
Stanford Dogs dataset. K = 0 corresponds to case 1 in one-to-
one correction, which is a strict constraint for selecting web
data and gets a worse result than relaxing the constraint by
adding case 2 in Eq. 5. As K increases, more training pairs
(images and their corresponding labels) are included, which in-
dicates that some web images attached with ambiguous labels
are identified which may carry useful information. However,
bigger K also means that more noise will be introduced.
We set K = 2 in our experiments based on the results in
Table IV for a good balance, which clearly outperforms one-
to-one correction (K = 1) and can reduce the influence of
hard label assignment.

3) Threshold € in One-to-Many Correction: Threshold ¢
is used to control the selection of “high-quality” web data
by comparing with the prediction results derived from the
basic model M. There are several elements which need to
be considered when deciding ¢: 1) if € is set to a small value,
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TABLE V
PERFORMANCE ON DIFFERENT SCALES OF CLEAN TRAINING SET ON STANFORD DOGS. THE NUMBER OF TRAINING IMAGES IN EACH SCALE IS 120 X 4,
WHERE ¢ = 1,2--. ;10 (VERY SMALL SCALE); 20, 30, - - - , 90 (LARGER SCALE), IN WHICH ¢ IS THE NUMBER OF IMAGES USED OF EACH CATEGORY.

THE EXPERIMENTS ARE CONDUCTED ON RESNETS50.

7 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90
D+ft| 16.35 30.76 39.78 50.49 55.72 59.91 62.24 63.52 66.30 66.85 73.02 74.75 77.15 77.98 78.21 78.79 78.87 79.47
D+ft| 74.58 75.07 75.59 76.46 76.72 77.37 77.62 76.67 77.43 7535 78.11 78.89 78.42 78.94 80.10 79.75 80.01 80.71
Ours | 73.17 76.64 77.21 79.99 80.44 80.78 80.38 80.81 80.74 81.26 82.38 82.53 83.01 83.56 84.12 85.33 85.79 86.34
w0 I s rather than the clean target data. Meanwhile, different tasks
% e | 10 ol have disparate properties and difficulties, so the initial amount
g8 ﬁ ZE g" N e of training data can also be different. Based on these results,
g Z 8 2 we believe the proposed method can work effectively by using
785 ‘ | | I 2 “ limited images, e.g., fewer than 10 images per category, to
04 05 06 07 079608 08  ° 04 05 06 07 07528 08 09 train My, and this number of data is easy to collect in practice.
(a) Starfford Dogs (b) F;od—lol
5 - 1izx103 5 p— 5040
- " oo EEE g: = i _ E. Analysis of Results for Different Tasks
8 Z I °2 g I 02 In this section, we discuss the classification results on
i I : :" I I ;0 different tasks. With the setup and the parameters illustrated
04 05 06 07 07184 08 09 0.4 0.50.5247 0.6 07 08 09 .
© ndoor7 © 019 above, we conduct experiments on four datasets, and the
results are shown in Table VI. The results of basic models are
shown in Baseline, including models fine-tuned with clean data
Fig. 8. Effectiveness of the parameter £ on Google data based on VGGNet  and noisy web data, where the performance of the model with

in 1-st iterations. “Num” is the number of selected images by the progressive
filtering method when ¢ is set to different values. “Acc” is classification
accuracy on the validation set of the Stanford Dogs, Food-101, Indoor-67
and SD-198 dataset.

more training data will be used but the data is more noisys;
2) if € is set to a large value, many images will be deleted,
but the training data contains less noise; 3) the reliability of
web label is related with the difficulty level of task, which
has been discussed in Section IV-C. Therefore, ¢ should be
a trade-off between the quantity and quality of the selected
web data. We evaluate the performance of our method with
changing ¢ in Fig. 8. As can be seen, the proposed method
is not sensitive to € when the values of £ belongs to an
interval [e* — d,* + 6],0 < & < 0.1 (¢* represents the
optimal solution). Meanwhile, we find from Fig. 8§ that the
classification accuracy of the basic model on the validation
set is contained in the confidence interval (i.e., 0.7926, 0.7528,
0.7184 and 0.5247 for the four tasks, respectively). Therefore,
we set € as the recognition performance on the validation data
to adapt to each specific task. This explains the setting of
parameter € in Section III-A.

4) Evaluation of the scale of clean training data: Table V
shows the results that the initial model M is trained on
different amounts of training data from Stanford Dogs. As
can be seen, the proposed method will begin to bootstrap
the training when the clean training data increases slightly
(compared with one image per category). For the smallest scale
(120 images for dog recognition), it trains a basic model with
an accuracy of only 16.34%, i.e., the selection capability of
this model is very limited. Therefore, the performance of the
final model is largely decided by the distribution of web data

web data is better than only using clean data except for skin
disease classification (#1 and #2). In particular, for skin disease
classification, the standard dataset is comparatively small and
the web skin disease images have more noisy labels than other
tasks. The accuracies of D,,;, + ft are lower than using clean
data only on skin disease classification, which is consistent
with the analysis in Section IV-C and the information shown
in Fig. 3 and Fig. 4. For example, Fig. 4 shows the web skin
disease images from Flickr and Twitter. They have a higher
degree of label noise than other tasks, which results in lower
accuracy on D, + ft. Compared with skin diseases, the
quality of images from search engines and social network sites
for food and dogs is acceptable because they are more common
in daily life and people are also more willing to share this kind
of images on the Internet.

Furthermore, the improvement of accuracy against the base-
line for different tasks varies, e.g., the improvement on Alexnet
of skin diseases is around 4%, while for food classification, it
is near 10%. Meanwhile, the experimental results on food and
dogs conform to the expectation. For different models, adding
web images can improve the performance of the model (#2,
#13, #23 and #31 of food and dog). However, after simple
filtering [53], [54], the accuracy may be reduced (e.g., #14
and #32 of food, #24 of dog) because some useful images
are wrongly removed. For the dog dataset, the first round
filtering removes almost 40% web images, which contain
many useful images with abundant domain information. This
is also evidenced by results in the first two lines of Table IV, so
the classification accuracy becomes worse after filtering. The
proposed method can prevent the above case from happening
and the results (Baseline+) are better than D y;.+ft. Since,
we employ a progressive filtering method to process web data
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TABLE VI
ACCURACIES (%) ON FOUR DATASETS WITH DIFFERENT METHODS. D_jeqyn AND D, REPRESENT THE TARGET DATASET AND THE MIXED DATASET,
RESPECTIVELY. D f;¢e,» DENOTES THAT THE WEB DATA IS FILTERED FROM Dy 5. “FT” MEANS FINE-TUNING. IN THE LAST COLUMN, (+L-DOG) MEANS
THE USED WEB DATA IS L-DOG [11]. BASELINE+A INDICATES THAT PROGRESSIVE FILTERING IS EMPLOYED, AND +B SHOWS ONE-TO-MANY
CORRECTION IS USED (INSTEAD OF ONE-TO-ONE CORRECTION). “x” IS OBTAINED BY EMPLOYING THE MODIFICATION OF DOMAIN ADAPTATION
MODEL [52] TO FURTHER REDUCE THE EFFECT OF DIFFERENT DATA DISTRIBUTION. HERE, WE REPLACE THE LOGISTIC REGRESSION LOSS WITH
SOFTMAX LOSS (THE LOG-LIKELIHOOD LOSS WITH BINOMIAL CROSS-ENTROPY RESPECTIVELY).

# | Type Method Model Test Accuracy
SD-198  Food-101  Dogs-120  Indoor-67 | Dogs-120 (+L-Dog)

1 Deilean+t 50.85 65.93 63.57 65.52 63.57
2 Baseline Doz +Ht 42.71 69.71 65.63 69.63 64.84
3 Dyirtertit 50.92 69.89 67.95 63.58 66.16
4 Bottom-up [53] 44.26 70.29 72.17 64.18 71.59
6 Previous work | Pseudo-label [54] 44.02 69.36 70.32 63.88 71.01
7 Weakly [55] Alexnet 45.44 71.10 73.00 64.85 73.64
8 Baseline+A 52.76 73.81 72.30 69.63 71.42
9 Ours Baseline+B 51.06 70.64 69.43 65.47 69.35
10 Baseline+A+B 53.46 73.78 73.99 70.30 73.20
11 Baseline+A+B+x 54.37 75.65 75.52 71.12 74.93
12 Dereantt 51.34 66.61 63.19 65.22 63.19
13 | Baseline Dz Ht 44.74 69.25 66.08 67.99 65.34
14 Dirtertit 51.43 68.48 69.56 63.51 65.90
15 Boosting [56] 45.99 72.53 73.49 65.60 73.28
16 | Previous work | PGM [17] Caffenet 46.38 73.14 72.63 65.30 71.83
17 WSL [6] 46.99 73.21 73.52 65.60 73.79
18 Baseline+A 51.97 73.57 73.05 68.21 72.64
19 Ours Baseline+B 51.55 71.13 72.34 65.45 71.22
20 Baseline+A+B 53.01 75.24 73.68 69.03 73.80
21 Baseline+A+Bx 53.95 76.92 75.74 71.19 75.63
22 Delean+Ht 55.19 74.32 78.29 71.79 78.68
23 | Baseline Dz Ht 51.58 76.98 81.03 72.01 77.54
24 Dyigertt 53.31 78.24 79.70 72.16 79.57
25 | Previous work | Harnessing [12] VGGNet 54.50 79.02 78.45 70.00 78.31
26 Baseline+A 56.23 79.59 83.12 72.46 81.95
27 Ours Baseline+B 55.47 78.71 82.47 72.24 80.66
28 Baseline+A+B 57.44 79.93 83.72 73.51 82.51
29 Baseline+A+B+x 59.66 81.32 84.36 75.97 83.75
30 Deilean+t 57.35 83.14 80.51 79.63 80.51
31 | Baseline Doz +Ht 54.22 85.21 81.43 82.31 82.07
32 Dirtertit 63.49 86.10 82.62 81.34 83.61
33 | Previous work | Goldfince [11] ResnetS0 65.74 86.75 85.90 83.43 85.48
34 Baseline+A 65.67 88.58 84.57 82.54 84.57
35 Ours Baseline+B 64.19 86.47 83.26 82.24 83.93
36 Baseline+A+B 67.25 88.96 85.93 83.58 85.69
37 Baseline+A+B+x 70.56 89.77 87.36 84.78 86.94

iteratively, the useful images have more chances to be chosen,
and the model will be more robust to noise.

In contrast to dog images which have specific objects,
indoor scene images have a wide variety of content which
often contain salient people and other obstructions in the
center of the images, so it is difficult to improve the perfor-
mance of recognition with typical filtering strategies [53], [54].
However, the proposed algorithm can boost the classification
accuracy on the indoor scenes dataset. As shown in Table VI,
our method achieves an accuracy of 84.78%, outperforming
other methods. Since the challenging data will be added
gradually, the learned model can recognize complex scenes
increasingly.

Finally, in order to verify the robustness of our method, we

also conduct experiments on the L-Dog dataset [11], which
is a publicly available noisy dataset for dog recognition. Note
that, we only use a subset of L-Dog dataset, in which the
categories are the same with the Stanford Dogs dataset. The
results are consistent with those of our collected web data.
Moreover, no matter which deep model (AlexNet, CaffeNet,
VggNet, ResNet) is employed, the proposed algorithm shows
its superiority consistently.

F. Comparison with the State-of-the-Art

In Table VII, we compare the proposed method with other
state-of-the-art approaches. The proposed method performs
favorably against other methods on different tasks. Specifi-
cally, for dog recognition, [11] employs multiple crops and
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TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS (INCLUDING THOSE USING WEB DATA, e.g., [11]) ON FOUR PUBLIC DATASETS. BOLD VALUES
CORRESPOND TO THE BEST ACCURACY (%) FOR EACH DATASET.

SD-198 Food-101 Stanford Dogs MIT Indoor
Method Acc (%) | Method Acc (%) | Method Acc (%) | Method Acc (%)
Caffe [43] 42.31 Random Forest [45]  50.76 NAC [57] 68.61 IFV+DMS [58] 66.87
VGG [43] 3791 SNN [59] 69.90 FoF-Weakly [60] 71.40 FB/REF [12] 61.60
Caffe+ft [43] 46.69 DCNN [45] 56.40 PDFS [61] 71.96 CL-45C [62] 68.80
VGGt [43] 50.27 CNNFM [63] 58.49 FB/REF [12] 73.10 MLVED [64] 69.69
NPT [65] 52.19 DCNN+ft [45] 68.44 FOAF+t [66] 74.49 Hybrid-CNN [67] 70.80
CSDR [68] 56.47 PTFT [69] 70.41 MagNet [70] 75.10 CNN+G [64] 70.46
Ours (Resnet50)  70.56 Im2Calories [71] 79.00 RED-OSSVR(vs) [72]  79.50 S-NN [59] 72.20
ResNet50+ft 84.31 Weakly-S [73] 80.43 SFV [74] 72.86
ResNetl 10+t 84.88 Inception-v3 [11] 80.60 MPP+DSFL [75] 80.78
Inception-v3 [76] 88.28 Goldfince [11] 85.90 Double fully hybrid [77]  80.97
Ours (Resnet50) 89.77 Ours (Resnet50) 87.36 Ours (Resnet50) 84.78

Fig. 9. Examples from four dog categories. The images in the same red rectangle are samples misclassified by prior work [11]. With the help of noisy web
data, our proposed method can distinguish images from classes (a) and (b). However, we fail to recognize the dogs from classes (c) and (d) because none of

the collected noisy data looks like the test images.

a much larger web dataset (both in terms of category and
image numbers). Our method does not require additional
categories while improves the accuracy by about 1.5% com-
pared with [11] (from 85.90% to 87.36%). Fig. 9 shows the
examples misclassified by [11] and correctly recognized by
our method. Since the web images sampled by the proposed
method can cover the characteristics of both categories, the
trained model can recognize the images with the similar
appearance by exploiting web data. Overall, these results
indicate that progressive filtering and one-to-many correction
are effective in extracting meaningful information from web
data to improve the performance of CNN models.

V. CONCLUSIONS

In this paper, we present a novel progressive filtering
method that effectively exploits web images for various image
classification tasks. Moreover, a one-to-many label assignment

strategy is employed for data correction based on the confi-
dence values of labels and the tags of images. The method
performs well in a variety of image classification tasks and
the results are competitive to the state of the art.
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