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Abstract—Non-rigid registration is challenging because it is ill-posed with high degrees of freedom and is thus sensitive to noise and
outliers. We propose a robust non-rigid registration method using reweighted sparsities on position and transformation to estimate the
deformations between 3-D shapes. We formulate the energy function with position and transformation sparsity on both the data term
and the smoothness term, and define the smoothness constraint using local rigidity. The double sparsity based non-rigid registration
model is enhanced with a reweighting scheme, and solved by transferring the model into four alternately-optimized subproblems which
have exact solutions and guaranteed convergence. Experimental results on both public datasets and real scanned datasets show that
our method outperforms the state-of-the-art methods and is more robust to noise and outliers than conventional non-rigid registration
methods.
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1 INTRODUCTION

Non-rigid registration is an active research area in computer
graphics and computer vision [17], [24], [32], [37], and is a key
technique for dynamic 3-D reconstruction using a depth camera.
Commodity depth sensors, e.g., Microsoft Kinect, become cheaper
and more widely used, but depth images and reconstructed point
clouds captured by such devices contain much noise. Hence, non-
rigid registration methods robust to noise and outliers are highly
desirable to scan dynamic scenes with deformable objects.

Given two input 3-D shapes, one as the template shape
and the other as the target shape, non-rigid registration aims
to find a suitable transformation that when applied deforms the
template shape to be aligned with the target shape. Non-rigid
registration is often formulated as an optimization problem. Most
methods formulate some energy functional with both position and
transformation constraints. The position constraint measures the
closeness of the transformed template shape and the target shape,
and the transformation constraint measures the fitness to model,
which might include the smoothness, namely the total energy of
transformation differences of all the local neighbors. Most work
uses the classic squared `2-norm in the position constraint and the
transformation constraint [21], [3], [33]. However, the quadratic
energy functional is more easily affected by noise and outliers. To
address this problem, Yang et al. [40] propose a sparse non-rigid
registration (SNR) method with an `1-norm regularized model for
the transformation constraint. However, their position constraint
is still based on the `2-norm. In practice, e.g. for near piece-wise
rigid deformation, which is common for real-world deformable
objects, the positional error tends to concentrate on small regions.
This cannot be modeled well using the `2-norm.
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In this paper, we propose a non-rigid registration method with
sparsity-regularized position and transformation constraints. The
distribution of positional errors and transformation differences
for typical non-rigid deformation can be well modeled using the
Laplacian distribution, or equivalently, the `1-norm should be
used to measure both the positional errors and transformation
differences. To promote the sparsity, we adopt a reweighted
sparse model, which is solved by the alternating direction method
of multipliers (ADMM). The proposed method is evaluated on
public datasets [10], [38] and real datasets captured by a RGB-
D depth sensor. The results demonstrate that the proposed method
obtains better results than the state-of-the-art non-rigid registration
methods.

The main contributions of this work are summarized as:

• We propose a non-rigid registration method on both po-
sition and transformation sparsity. The proposed model is
robust against outliers as the sparsity terms allow a small
fraction of regions with larger deviations.

• We incorporate orthogonality constraints in the sparsity-
inducing non-rigid registration framework to promote lo-
cally rigid transformations.

• We equip the proposed non-rigid registration model with
a reweighted scheme to iteratively enhance sparsity in the
series of alternating optimization subproblems.

2 RELATED WORK

3-D shape registration consists of rigid registration and non-rigid
registration. Rigid registration aims to find a global rigid-body
transformation, while non-rigid registration needs to find a set of
local transformations that align two shapes.

In rigid registration, the 3-D shapes are assumed to be aligned
by a Euclidean transformation, including rotation and translation.
Iterative Closest Point (ICP) and its variants [5] are the dominant
algorithms for rigid registration. This kind of methods alternates
between two steps: 1) finding closest points and 2) solving the
optimal transformation. As an improved method of ICP, Chen et
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Figure 1. Normalized histograms and the associated fitted Laplacian and Gaussian distributions of positional errors measured in the `1 norm (with
equal contribution from each dimension) (b) or with Euclidean distance (c) for Bouncing dataset (a). The graphs show proportion of correspondences
(y-axis in logarithmic scale) with specific positional errors (x-axis).

al. [12] minimize the shortest distance between a point in the
template and the tangent plane of the closest point on the target.
Pottmann et al. [28] propose a registration method with quadratic
convergence, which gives faster and more stable convergence
than the standard ICP [27]. Bouaziz et al. [8] propose a new
variant of the ICP algorithm, which uses sparsity-inducing norms
to represent the positional constraint and achieves better results for
the situation with noise and outliers. Their work focuses on rigid
registration with low degrees of freedom, and hence regularization
is not necessary.

When shapes have large deformations from template to target,
automatic non-rigid registration is necessary. It is more chal-
lenging due to its high degrees of freedom, and an appropriate
deformation model is the key for an efficient and robust algorithm.

Some methods compute global rigid transformations for bones
and local non-rigid transformations near joints, which is essen-
tially a piecewise rigid transformation model. Allen et al. [1] place
markers on the object to help reconstruct the pose of scan and use
it as a basis for modeling deformation. Pekelny et al. [26] use
predefined bone information to find bone transformations.

Some models take more generic deformations into considera-
tion. Chui et al. [14] use the thin-plate spline (TPS) as the non-
rigid transformation model. Papazov et al. [25] allow points to
move freely and use an additional uniform distribution to limit
noise and outliers, and propose an ordinary differential equation
(ODE) model. Local affine transformations [2] are also frequently
used in non-rigid registration. Liao et al. [22] use differential
coordinates as local affine transformations with smoothness con-
straints. Amberg et al. [3] use a stiffness term to ensure similarity
of adjacent transformations. Rouhani et al. [29] model non-rigid
deformation as an integration of locally rigid transformations. In
our work, we use local affine transformations with an orthogonal-
ity constraint as it allows more flexibility to capture fine surface
details while keeping local shapes.

Non-rigid registration is often formulated as an energy func-
tional with data and regularization terms. Most of the non-rigid
registration work models the data term in the `2-norm in a least-
squares sense [34], [3].

Regularization terms help to preserve smoothness, making the
optimization more robust to noise and outliers, and `2-norm is

also widely used in regularization terms. Süßmuth et al. [35] use
a generalized as-rigid-as-possible energy [33] to promote smooth-
ness. Liao et al. [22] define a transformation model using the
TPS [14], and use graduated assignment for non-rigid registration
and optimization. Wand et al. [39] take a set of time-varying point
data as input, and reconstruct a single shape and a deformation
field that fit the data. To improve robustness, Li et al. [21]
solve correspondences, confidence weights, and a deformation
field within a single optimization framework using `2-norm. Their
method however requires adjacent frames to be sufficiently close
to work effectively. Hontani et al. [18] propose a statistical shape
model (SSM) which is incorporated into the nonrigid ICP (NICP),
and outliers can be detected based on their sparseness. Based on
the observation that many deformable objects, in particular human
bodies, have near articulated motions, Guo et al. [17] introduce
`0 regularization for motions which provide more accurate and
robust tracking in dynamic 3D reconstruction. However, since
their method is based on a tracking pipeline, adjacent frames are
required to have high similarity. Moreover, their sparse regular-
ization is only applied to motions. Yang et al. [40] propose
a sparse non-rigid registration (SNR) method with an `1-norm
regularized model for the smoothness. However, their `2-norm
position constraint cannot model the concentration of positional
errors well.

Non-rigid registration is also related to and often an important
component in dynamic 3D (or 4D) reconstruction. Li et al. [20]
propose a pioneering solution to dynamic reconstruction from a
sequence of depth images captured by a single depth camera.
The method produces impressive results but requires to capture
the coarse 3D template of the deforming object. It also assumes
adjacent scans are reasonably close. More recently, the work [41]
achieves real-time reconstruction with GPU acceleration. How-
ever, the method still requires the complete template model to be
scanned in advance. To reconstruct dynamic 3D deforming objects
without a template prior is still challenging, and state-of-the-art
techniques such as [15] utilize multi-camera systems (24 cameras
producing 8 depth streams are used in [15]) to achieve real-time
4D performance capture. Our work considers general non-rigid
registration where scans can have substantial deformation and no
template prior is required.
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In this paper, based on the observation that the deformations
of 3-D surfaces vary smoothly and the positional distances and
transformation differences are sparse, we propose a non-rigid
registration method with sparse position and transformation con-
straints. The model is efficiently solved by the alternating direction
method under the augmented Lagrangian multiplier framework.

3 MOTIVATION

The data terms in previous shape registration models [17], [21],
[40] are quadratic, which implicitly assumes the Gaussian distri-
bution of positional errors. However, transformations in certain
common scenarios, such as articulated motion of humans, are
largely piecewise smooth signals residing on 3D surfaces, re-
sulting in larger positional errors for geometric details and joints
and smaller errors for the remaining surfaces. This suggests that
the positional errors are sparse, and should be modeled by a
heavy-tailed distribution, rather than being dense and modeled
by a rapidly vanishing Gaussian distribution. This is verified in
Fig. 1(b). We uniformly pick up 10% ground truth matchings
(vertices) as correspondences, and solve for the transformations
using the SNR method [40] which measures the positional errors
in the standard quadratic term to avoid bias towards the `1-norm.
The Laplacian distribution fits the histogram of positional errors
significantly better than the Gaussian distribution, suggesting the
use of sparsity-promoting `1-norm in the data term.

Let di = (x̃i, ỹi, z̃i) be the difference between the ith trans-
formed template vertex position and the position of its correspond-
ing target vertex. Our `1-norm sparsity measures equally the sum
of coordinate differences in each dimension for all the correspond-
ing vertices (i.e., E1 =

∑
i
‖di‖1 =

∑
i

(|x̃i|+ |ỹi|+ |z̃i|)).

Another possibility is to use the sum of Euclidean distances (group
sparsity) between corresponding points (i.e., Eg =

∑
i
‖di‖2 =∑

i

√
x̃2i + ỹ2i + z̃2i ), which also well fits the distribution of posi-

tional errors as shown in Fig. 1(c). The group sparsity advocates
sparsity for each Euclidean distance as a whole, while the `1-
norm allows a large distance along a particular dimension. In
this sense, `1-norm is more flexible to preserve large non-rigid
deformation along some dimensions. Such an advantage is also
observed in the anisotropic total variation (TV) [16] that applies
the `1-norm to the image gradient over the isotropic TV [30] that
measures TV as the sum of `2-norm (not squared). Birkholz [6]
showed that anisotropic TV achieves better denoising performance
in preserving the geometries of corners in images. We choose the
`1-norm to measure the positional errors for its potential flexibility,
and also for its easier and faster implementation with an element-
wise shrinkage (cf. Table 5 for statistics of running times).

In this paper, we make the assumption that the surfaces to
be registered undergo transformations which are near piecewise
smooth. This covers a broad range of practical scenarios ranging
from common (near) articulated deformations such as human
bodies to certain non-articulated deformations such as facial ex-
pressions. In such cases, substantial changes of transformations or
large registration errors occur in relatively local areas. Note that
our model does not require such consistency to satisfy entirely,
and can well cope with situations such as muscle bulge, change
of local shapes at joints, etc. Our assumptions also fit well with
inaccurate correspondences and sparse noise/outliers, as they also
induce sparse distributions of errors.

4 THE PROPOSED METHOD

4.1 Iterative Framework

We iteratively compute the deformation between the template
shape and the target shape. Each iteration consists of two steps.
In the first step, the correspondences between template and target
are estimated using the registration result obtained from the last
iteration. At the beginning of the iteration, we use a technique
based on local geometric similarity and diffusion pruning of
inconsistent correspondences [36] as it often provides reliable cor-
respondences. Alternative correspondence techniques or manual
specification of a few correspondences may instead be used (an
example is shown in Fig. 5). These computed correspondences are
used to initialize the correspondence mapping, referred to as f .
Then, during the iterative process, we update f by using the closest
points between template and target shapes to find additional
correspondences similar to ICP. In the second step (Sec. 4.2),
we propose an energy-minimization approach based on double
sparsity representation to estimate the non-rigid transformations
using the correspondences obtained from the first step.

4.2 Deformation Estimation

Let vi , [xi, yi, zi, 1]> be a 3D point in the homogenous
coordinates. Denote by V , {v1, · · · ,vN} a template set of
3D points and by U , {u1, · · · ,uM} a target set of 3D points,
where N and M are the numbers of points. Denote by uf(i) ∈ U
the correspondence of vi ∈ V . Define f : {1, · · · , N} 7→
{0, 1, · · · ,M} as the index mapping from the template points
to the target points, where f(i) = 0 means the corresponding
vertex cannot be found for the i-th vertex. Denote by Xi the 3×4
transformation matrix for point vi. Define X , {X1, · · · ,XN}
as the set of non-rigid transformations. For compact notation,
we define X , [X1, · · · ,XN ]

> as a matrix containing the N
transformation matrices to be solved. The proposed method is to
find non-rigid transformations X that transform the template V
into the target U as accurately as possible, given a correspondence
mapping f .

The non-rigid registration is formulated as the minimization of
the following energy function:

E (X; f) = Edata (X; f)+αEsmooth (X)+βEorth (X) , (1)

where Edata (X), Esmooth (X) and Eorth (X) are data term,
smoothness term, and orthogonality constraint, respectively. α
and β adjust the importance of different terms. The data term
measures the position accuracy, the smoothness term imposes
a smoothness constraint so that the original ill-posed problem
(defined by only the data term) is now well-posed, and the
orthogonality constraint promotes locally rigid transformations,
which is particularly needed for underconstrained scenarios such
as partial meshes.
Data term: We measure the accuracy of deformation as the
closeness of the transformed points to their corresponding target
points. We assign a weight, denoted by wi, for each point. The
weight wi is one if there is a corresponding point on the target
shape for vi, and zero otherwise. Hence, we propose the following
data term

Edata (X; f) =
∑
vi∈V

wi
∥∥Xivi − ũf(i)

∥∥
1
, (2)

where ũf(i) is the Cartesian coordinate of uf(i).
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For the compact representation in algorithm derivation, we
define the following matrix/vector form of the variables to refor-
mulate data term (2):

W = diag (
√
w1, · · · ,

√
wN ) ,

V = diag
(
v>1 , · · · ,v>N

)
,

Ũf =
[
ũf(1) · · · ũf(N)

]>
,

(3)

where diag(·) is a diagonal matrix containing the input elements
as diagonal entities. Then, the data term can be rewritten as

Edata (X; f) =
∥∥∥W (

VX− Ũf

)∥∥∥
1
. (4)

Smoothness term: In the smoothness term, local rigidity is as-
sumed: for vertex vi, the transformations of neighboring vertices
vj ∈ Ni should have very close transformed positions when
applied to vi. Therefore, we define the following smoothness term:

Esmooth (X) =
∑
vi∈V

∑
vj∈Ni

∥∥Xivi −Xjvi
∥∥
1
. (5)

Define a graph G , (V, E), where the vertices of the graph
are the 3D points in V , and the edges of the graph are denoted
by E . For a 3D mesh, edges of the graph are simply defined by
the edges of the mesh; for 3D point clouds, edges can be defined
by connecting each vertex with its K-nearest neighbors (K is
typically set to 6). Denote the neighborhood of vertex vi by Ni,
and an edge eij is defined between each neighboring vertex vj
and vi. So, we have E = {eij | vj ∈ Ni,vi ∈ V}. Similar to the
data term, we define a differential matrix K ∈ {−1, 1}|E|×|V|
on the graph G for concise presentation. Concretely, each row of
K corresponds to an edge in E and each column corresponds to
a vertex in V . Each row in K has only two nonzero entries. For
example, assuming the rth row in K is associated with edge eij ,
then the entry related to the reference vertex vi is set at 1, while
the one related to the neighboring vertex vj is set at -1, i.e. kri = 1
and krj = −1. Let ki: denote the ith row of K. We introduce a
matrix B ∈ R|E|×4|V|, where the ith row of B is defined as
bi: := ki:⊗v>i and⊗ denotes the operator of Kronecker product.
Therefore, the cost of transformation smoothness is rewritten as

Esmooth (X) =
∥∥BX

∥∥
1
. (6)

Orthogonality constraint: Especially for partial meshes with large
motions, the problem may be underconstrained leading to large
distortions. In this case, the orthogonality constraint as defined
below is effective in better preserving local shapes and making the
solution more reasonable.

Eorth (X;Ri) =
N∑
i=1

∥∥SXi −Ri

∥∥2
F
,

s.t. RT
i Ri = I, det(Ri) > 0, (7)

where Ri is a 3 × 3 rotation matrix, and S =
[ 1 0 0 0
0 1 0 0
0 0 1 0

]
is a

constant 3× 4 matrix that extracts the rotation component of Xi.
det(Ri) > 0 ensures that Ri is a rotation matrix, not a reflection
matrix.

The final energy function has the following compact form with
matrix-vector notations:

min
X,Ri

∥∥∥W (
VX− Ũf

)∥∥∥
1

+ α
∥∥BX

∥∥
1

+ β
N∑
i=1

∥∥SXi −Ri

∥∥2
F
,

s.t. RT
i Ri = I, det(Ri) > 0. (8)

Algorithm 1. Algorithm of reweighting non-rigid registration
1. Input: template V , target U .
2. While not converged do
3. Find correspondence mapping f (l) : V 7→ U ;
4. Update W

(l)
D and W

(l)
S acco. to (10) and (11), resp.

5. Solve transformations X(l) via Algorithm (2);
6. End while
7. Output: X

Algorithm 2. ADMM algorithm to solve (9)
1. Input: Ũf(l) ∈ RN×3, V ∈ RN×4N , B ∈ R|E|×4|V|;

2. Initialize: X(l,0) = X(l−1), Y(0)
1 ,Y

(0)
2 = 0;

µ1, µ2 > 0, ρ1, ρ2 > 1;
3. While not converged do
4. Solve C(l,k+1) by (16);
5. Solve A(l,k+1) by (18);
6. Solve R

(l,k+1)
i by (19);

7. Solve X(l,k+1) by (21)∼(22);
8. Update µ(k+1)

1 , and µ(k+1)
2 according to (15);

9. Update Y (k+1)
1 , and Y (k+1)

2 according to (15);
10. End while
11. Output: X(l).

Reweighting: In a sparse representation, the gap between the
convex `1-norm and the noncovex `0-norm in measuring sparse-
ness could be filled by reweighting the `1-norm [11]. To further
promote sparsity, both the data term and the smoothness term
are weighted, and the weighting matrices are updated at each
iteration of non-rigid registration. The weighted version of the
double sparsity model (8) is defined as follows:

min
X,Ri

∥∥∥WD

(
VX− Ũf

)∥∥∥
1

+ α
∥∥WSBX

∥∥
1

+ β
N∑
i=1

∥∥SXi −Ri

∥∥2
F
,

s.t. RT
i Ri = I, det(Ri) > 0. (9)

where WD and WS are diagonal weighting matrices for the data
term and smoothness term, respectively. The weighting matrices
are updated according to the `1-norm of the corresponding entries.
For the data term, the weights are updated as

W
(l)
D (i, i) =


1∥∥∥X(l−1)

i vi−ũ(l)

f(i)

∥∥∥
1
+εD

, f(i) 6= 0,

0, f(i) = 0,
(10)

where l represents the index of iteration, εD is a constant to avoid
the division-by-zero issue, and is set as 0.01 in the experiments.
Similarly, the weights for the smoothness term are updated as

W
(l)
S (i, i) =

1∥∥∥X(l−1)
i vi −X

(l−1)
j vi

∥∥∥
1

+ εS

, (11)

where εS is a constant which is set as 0.01 in the experiments, and
the rth row of matrix BX is associated with edge eij between
vi and vj . The reweighting scheme is incorporated into the
iterative registration framework, which only slightly increases the
computation to calculate the weights. The reweighted `1-norm is
also related to robust kernels [41] in suppressing the influence of
outliers, although we propose a different formulation that works
well in our sparse non-rigid registration framework.
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Figure 2. (a) Template (top) and target (bottom) shapes, (b)-(d): Compar-
ison results (top) and registration errors (bottom) of (b) `2-norm method,
(c) SNR method [40] and (d) Our method on Cat dataset.

To solve the problem, we first transform the minimization (9)
into the following form with auxiliary variables A and C:

min
X,C,A,Ri

∥∥C∥∥
1

+ α
∥∥A∥∥

1
+ β

N∑
i=1

∥∥SXi −Ri

∥∥2
F
,

s.t. C = WD

(
VX− Ũf

)
,

A = WSBX,RT
i Ri = I, det(Ri) > 0.

(12)

Then, we solve the constrained minimization (12) using the
augmented Lagrangian method (ALM) [4]. The ALM method
converts the original problem (12) to iterative minimization of
its augmented Lagrangian function:

L(X,C,A, {Ri},Y1,Y2, µ1, µ2) =
∥∥C∥∥

1
+ α

∥∥A∥∥
1

+
〈
Y1,C−WD

(
VX− Ũf

)〉
+
µ1

2

∥∥∥C−WD

(
VX− Ũf

)∥∥∥2
F

+ 〈Y2,A−WSBX〉+
µ2

2

∥∥A−WSBX
∥∥2
F

+ β
N∑
i=1

∥∥SXi −Ri

∥∥2
F
,

s.t. RT
i Ri = I, det(Ri) > 0,

(13)

where (µ1, µ2) are positive constants, (Y1,Y2) are Lagrangian
multipliers, and 〈·, ·〉 denotes the inner product of two matrices
considered as long vectors. Under the standard ALM framework,
(Y1, Y2) and (µ1, µ2) can be efficiently updated. However,
each iteration has to solve A, C, {Ri} and X simultaneously,
which is difficult and computationally demanding. Hence, we
resort to the alternate direction method of multipliers (ADM) [9] to
optimize A, C, {Ri} and X separately at each iteration. Detailed
derivation of the ADMM algorithm is referred to Appendix A.

The iterative non-rigid registration with reweighting is summa-
rized in Algorithm 1, and the algorithm for minimizing the Eq. (9)
is summarized in Algorithm 2 (see the Appendix for the detailed
derivation).

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method on clean datasets (Section 5.1), noisy datasets (Section
5.2), and real scans (Section 5.3). Running times of our method
are reported in Section 5.4. All the experiments are performed on
a desktop computer with an Intel i5 3.2GHz CPU and 8GB RAM.
The numbers of inner and outer iterations of our method are both
set as 20.

Figure 3. (a) Template (top) and target (bottom) shapes, (b)-(d): Compar-
ison results (top) and registration errors (bottom) of (b) `2-norm method,
(c) SNR method [40] and (d) Our method on Jumping dataset.

(a) (b) (c) (d)

Figure 4. Comparison results on Bouncing dataset: (a) Template and
target, (b) The method in [21], (c) SNR method [40], and (d) Our method.

Figure 5. Comparison results on Jumping dataset with 35 manually-
specified correspondences: (a) Given correspondences, (b) `2-norm
method, (c) SNR method [40], and (d) Our method

5.1 Results on Clean Datasets

We evaluate the proposed method on two datasets: TOSCA high-
resolution dataset [10] and a human motion dataset [38]. Fig. 2 and
Fig. 3 give the registration results on a particular pair of cat and
jumping datasets, compared with the classic `2-norm regularized
non-rigid ICP method and the SNR method [40]. The results
are shown as the overlap of the deformed template shape (blue)
and the target shape (gray) and the registration errors are color-
coded on the reconstructed mesh for visual inspection. Denote
gi as the ground-truth correspondence of vi. For a vertex vi,
the registration error is defined as ‖Xivi − gi‖22. The compared
classic `2-norm based non-rigid ICP method [7] is formulated as
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Figure 6. Registration results on Jumping dataset with deformation degree increases from top to bottom: (a) Template and target, (b) ICP + `0-norm
method [17], (c) Diffusion pruning (DP) + `0-norm method [17], (d) The SNR method [40], and (e) Our method.

(a) (b) (c) (d)

0

2.0

0.2

                

avg_error=0.1300

avg_error=0.0663

avg_error=0.3372

avg_error=0.1882

avg_error=0.0186

avg_error=0.0238

avg_error=0.0324

avg_error=0.0547

avg_error=0.0208

avg_error=0.0164

avg_error=0.0034
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avg_error=0.0429

avg_error=0.0036

avg_error=0.0011

Figure 7. Registration results on TOSCA dataset: (a) Template and target, (b) Diffusion pruning (DP) + `0-norm method [17], (c) The SNR method
[40], and (d) Our method.

optimizing:

min
X

∥∥W(VX− Ũf )
∥∥2
F

+ α
∥∥BX

∥∥2
F
. (14)

The smoothness constraint of this kind of methods is imposed
on the transformation differences. To ensure fair comparison, we
adjust the weight α until we get the most accurate registration
without loss of smoothness for each method. The result shows that
our method achieves the best results with less registration errors in

the areas with intensive deformations than the SNR method [40]
and the classic `2-norm regularized non-rigid ICP method, such as
the tail of the cat and the wrinkles around the waist of the person
highlighted in rectangles.

We compare our method with a state-of-the-art non-rigid
registration method [21] in Fig. 4. Obvious registration errors
can be seen in the result of the method in [21], especially in
the right foot (top) and head (bottom), while the methods with
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0

(a) (b) (c) (d) (e) (f)

Figure 9. Comparison results with and without reweighting scheme on Bouncing dataset: (a) Template, (b) Target, (c) Registration result without
reweighting scheme, (d) Registration result with reweighting scheme, (e) Registration errors without reweighting scheme, and (f) Registration errors
with reweighting scheme.

(a) (b) (c) (d)

0

0.2

0.08

Figure 10. (a) Template (left) and target (right) shapes, (b)-(d): Comparison results (left) and registration errors (right) of (b) `2-norm method, (c)
SNR method [40] and (d) our method on Bouncing whole-to-part dataset with frames 1, 21, 51, 84 as templates and frames 87, 107, 137, 171 as
targets.

Figure 8. Fraction of correspondences within the error threshold. The
graph shows the fraction of correspondences (y-axis) within the error
threshold (x-axis).

sparse representation (SNR [40] and our method) achieve better
registration results. The method in [21] works effectively when

the template and target shapes are close so that good initial cor-
respondences can be obtained, but the pose changes substantially
in this example. Moreover, our result is more accurate and better-
distributed for the whole body than the SNR method [40], due to
the sparse constraint on the position.

To evaluate the robustness of the proposed method, we manu-
ally assign 35 correspondences on Jumping dataset, and compare
the result of our method with the SNR method [40] and the `2-
regularized method. As shown in Fig. 5, our method achieves
the best result, especially around the places with substantial
deformation, e.g., the right knee.

We also compare our method with a state-of-the-art method
[17] that uses `0 norm in Fig. 6. The code from the authors
is used. The original method [17] uses ICP correspondences.
When registering scans with large deformations, correspondences
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(a) (b) (c) (d)

0.2

0.08

0

Figure 11. (a) Template (left) and target (right) shapes, (b)-(d): Comparison results (left) and registration errors (right) of (b) `2-norm method, (c)
SNR method [40] and (d) Our method on Bouncing part-to-part dataset with frames 1, 21, 51, 84 as templates and frames 87, 107, 137, 171 as
targets.

(a) (b) (c) (e)

0

0.3

0.15

(d)

Figure 12. Registration results on Bouncing whole-to-part dataset with deformation degree increases from top to bottom: (a) Template and target,
(b) ICP + `0-norm method [17], (c) Diffusion pruning (DP) + `0-norm method [17], (d) The SNR method [40], and (e) Our method.

derived from intrinsic geometric properties can be more effective.
To ensure fair comparison, we compare our method with two
versions of the `0-norm method: ICP + `0-norm method that
uses ICP to compute correspondences, and Diffusion pruning (DP)
+ `0-norm method that computes correspondences using [36] as
initialization like our method. Fig. 6 gives the registration results

for three different degrees of deformation (increasing from top to
bottom). It can be seen that with moderate deformation (top row),
both variants of [17] work reasonably well. However, when the
deformation is large, the method fails to align the two surfaces,
resulting in large errors. On the contrary, our method achieves
more accurate results than the other methods. The quantitative
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0.1

0.05

0

(a) (b) (c) (d) (e)

Figure 13. Comparison results on Jumping dataset with partially incorrect correspondences: (a) Template and target, (b) SNR method [40] result
with one third SHOT correspondences, (c) Our method result with one third SHOT correspondences, (d) SNR method [40] result with all SHOT
correspondences, and (e) Our method result with all SHOT correspondences.

(a)

(b) (c) (d) (e) (f)

Figure 14. Comparison results on Bouncing with noise (σ = 0.3, 0.7, 1). (a) Template and target, (b) Curves of registration errors vs. normalized
noise levels, (c) Target with noise, (d) `2-norm method, (e) SNR method [40], and (f) Our method.

evaluation (the mean of registration errors over all the vertices) is
shown in Table 1. While diffusion pruning helps reduce the errors
of [17] in most cases, our method has significantly smaller errors
than both variants and the SNR method [40].

Table 1
Quantitative evaluation for Fig. 6.

Mean Error
Deformation

ICP + `0-norm DP + `0-norm SNR Ours

Small 0.0148 0.0142 0.0121 0.0003
Median 0.1707 0.0371 0.0221 0.0023
Large 0.2011 0.2029 0.0247 0.0038

To more comprehensively evaluate the proposed method, we
test our method on five sets of shapes from the TOSCA high-
resolution dataset [10], compared with the Diffusion pruning
(DP) + `0-norm method [17] and the SNR method [40]. The

initial correspondences are uniformly selected 5% ground-truth
correspondences. We test every pair of models in each set (treating
one as template and the other as target), and the quantitative
evaluation (the mean of registration errors over all the vertices
for all the models) is shown in Table 2. Some examples are given
in Fig. 7. The average errors are shown in the subfigures. Fig. 8
shows the fraction of correspondences (y-axis) within the error
threshold (x-axis) [19]. Our method (green curve) detects nearly
100% correct correspondences for a small threshold of 0.05. The
results show that our method achieves the most accurate and robust
non-rigid registration.

To evaluate the effectiveness of the proposed reweighting
scheme, we compare the registration results with and without
reweighting on Bouncing dataset in Fig. 9. The parameters εD

and εS are set as 0.01. As shown in the figure, the reweighting
scheme significantly improves the registration results.

We also evaluate our method on the harder whole-to-part and
part-to-part registration problems. Since the 3D models in the
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(b)

(a)

(c) (d) (e) (f)

Figure 15. Comparison results on Bouncing with 1%, 2%, 5% outliers. (a) Template and target, (b) Curves of registration errors vs. normalized noise
levels, (c) Target with noise, (d) `2-norm method, (e) SNR method [40], and (f) Our method.

0.1

0.05

0

(a) (b) (c) (d) (e) (f)

Figure 16. Comparison results with and without reweighting scheme on Bouncing dataset with noise (σ = 1): (a) Template, (b) Target, (c)
Registration result without reweighting scheme, (d) Registration result with reweighting scheme, (e) Registration errors without reweighting scheme,
and (f) Registration errors with reweighting scheme.

0.1

0.05

0

(a) (b) (c) (d) (e) (f)

Figure 17. Comparison results with and without reweighting scheme on Bouncing dataset with 50% outliers: (a) Template, (b) Target, (c) Registration
result without reweighting scheme, (d) Registration result with reweighting scheme, (e) Registration errors without reweighting scheme, and (f)
Registration errors with reweighting scheme.

Table 2
Quantitative evaluation for five sets of shapes from the TOSCA dataset.

Method Cat Centaur Gorilla Horse Wolf

DP + `0-norm 2.6366 0.7311 22.1740 6.6398 0.0545

SNR 0.0902 0.1799 5.364 0.0865 0.0359

Ours 0.0090 0.0297 0.5315 0.0089 0.0012

public dataset are complete, we obtain partial models by extracting
the visible part of each complete model with a virtual depth
camera rotating around the model, while keeping the ground truth
correspondences. Fig. 10 and Fig. 11 give the whole-to-part and
part-to-part registration results on the Bouncing dataset which has
a total of 172 models. We use a systematic approach that takes the

models at frames 1-86 as templates and the models at frames 87-
172 as targets such that frame t is registered to frame t+ 86. We
have compared the methods on all the models in this dataset, and
Fig. 10 and Fig. 11 show the registration results for 4 frames. The
mean of registration errors over all the vertices in the overlapping
regions for all the models in the entire dataset of `2-norm method,
SNR method [40] and our method in the whole-to-part case are
0.0323, 0.0324 and 0.0262, respectively. The mean of registration
errors over all the vertices in the overlapping regions for all the
models in the entire dataset of `2-norm method, SNR method [40],
and our method in the part-to-part case are 0.0380, 0.0381 and
0.0318, respectively. It can be seen that our method achieves the
best registration with the smallest errors among these methods. For
part-to-part registration, our method reduces errors by more than a
half, compared with state-of-the-art sparse non-rigid registration
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method [40]. We also compare with the `0-norm method [17]
for the whole-to-part case in Fig. 12. The quantitative evaluation
(the mean of registration errors over the whole model) is shown
in Table 3. The `0-norm method [17] has similar limitations to
handle large deformations, while our method gives more accurate
and robust results.

Table 3
Quantitative evaluation for Fig. 12.

Mean Error
Deformation

ICP + `0-norm DP + `0-norm SNR Ours

Small 0.0279 0.0275 0.0269 0.0261
Median 0.0413 0.0541 0.0249 0.0195
Large 0.3390 0.0977 0.0430 0.0284

5.2 Results on Noisy Datasets
1) Correspondences with partially incorrect matchings:

It is common to include incorrect correspondences using
established methods. We simulate this in two cases. In the first
case, we obtain two thirds of correspondences using diffusion
pruning [36] and the remaining one third using local geometric
feature matching based on SHOT signatures [31]. The majority
of correspondences from the former are correct while many
correspondences from the latter are incorrect due to the ambi-
guity of local features. In the second case, we generate all the
correspondences using SHOT signatures. Fig. 13 gives the results
for the two cases in a difficult situation which involves very
complex transformations from template to target. As shown in
the figure, our method is significantly more robust than the SNR
method [40] with respect to incorrect correspondences. The mean
of registration errors over all the vertices for the four cases in Fig.
13 (b-e) are 0.038, 0.012, 0.047, and 0.032, respectively.
2) Target shapes with noise or outliers:

In the first case, 3-D shapes of targets are polluted with dense
noise along the normal directions of the associated vertices. All the
target vertices are perturbed with Gaussian noise. The standard
deviation of the noise σ is normalized by l̄, where l̄ is the
average length of triangle edges on the associated target mesh,
and chosen in the range of [0.1, 1]. Fig. 14 gives the registration
results compared with the SNR method [40] and the `2-norm
regularization method. The results show that our method is more
robust to noise, performing significantly better for models with
high noise levels.

In the second case, 3-D shapes of targets are polluted with
sparse outliers along the normal directions of the associated
vertices. Fig. 15 gives the results for the situations when 1%,
2%, 5% of target vertices are perturbed with Gaussian noise. The
results show that our method is more robust than the other two
methods, particularly for cases with larger proportion of outliers.

To evaluate the effectiveness of the proposed reweighting
scheme, we also compare the registration results with and without
reweighting for noise and outlier cases on Bouncing dataset in
Fig. 16 and Fig. 17. The parameters εD and εS are set as 0.01. The
standard deviation of the noise σ is set as 1, and the percentage of
outliers is set as 50%. It can be seen that the reweighting scheme
contributes significantly to improving the registration results for
the dataset with noise and outliers.

We compare the registration results with different parameter
settings for the reweighting scheme on Bouncing dataset with

50% outliers in Fig. 18 to evaluate the influence of the paremeters
εD and εS. To make experiments more tractable, we adjust both
parameters consistently (i.e. εD = εS = ε). It can be seen that
the best setting is 0.006 for this case, which has the smallest
registration errors. However, the performance is quite close, and
0.01 is a generally good choice (found in experiments).

0.1

0.05

0

(b) (c) (d)(a)

Figure 18. Comparison results with different parameter settings for the
reweighting scheme on Bouncing dataset with 50% outliers: (a) Curves
of registration errors vs. ε values, (b) Registration result with ε = 0.006,
(b) Registration result with ε = 0.01, and (d) Registration result with
ε = 0.05.

(a) (b) (c) (d)

Figure 19. Comparison results on Kinect datasets: (a) Template and
target, (b) `2-norm method, (c) SNR method [40], and (d) Our method.

5.3 Results on Real Scans
Fig. 19 presents the results on real scans generated by Kinect Fu-
sion [23] using Kinect V2.0. The real scans are very challenging,
because they have much noise and a large number of outliers.
Moreover, each mesh is incomplete and the topology between
the template and the target is inconsistent. Hence, it is difficult
to obtain sufficient and reliable correspondences. The overlap of
the deformed template and the target shows that the `2-norm
regularization method and the SNR method present misalignments
around the hands, arms and some other joints which have large
deformations, while the result of our method is well-distributed
and better registered.

We also compare our method with the `0-norm method [17] on
the Kongfu dataset [17] in Fig. 20, where pairs of (non-adjacent)
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Figure 20. Registration results on Kongfu dataset with deformation degree increases from top to bottom: (a) Template and target, (b) ICP + `0-norm
method [17], (c) Diffusion pruning (DP) + `0-norm method [17], (d) The SNR method [40], and (e) Our method.

(a) (c) (e)(b) (d)

Figure 21. Comparison results on Kinect datasets: (a) Base mesh and four partial color meshes, (b) Registered results of `2-norm method, (c)
Registered results of SNR method [40], (d) Registered results of our method, and (e) Texture fusion results of our method.

frames with increasing degree of deformation are used as input.
Our method clearly outperforms both variants of [17], especially
for the hands where significant movements exist between scans.
The quantitative evaluation (the mean of registration errors over
the whole model) is shown in Table 4. Our method has the smallest
errors.

Table 4
Quantitative evaluation for Fig. 20.

Mean Error
Deformation

ICP + `0-norm DP + `0-norm SNR Ours

Small 0.0035 0.0035 0.0031 0.0033
Large 0.0039 0.0039 0.0033 0.0028

Fig. 21 gives an example of generating a complete color mesh
for a human head. A base mesh is scanned by Kinect Fusion using
Kinect V2.0, and four partial color meshes are registered to the
base mesh using our method. The textures are blended by solving
the Poisson equation over the surface of mesh [13]. As shown in
the figure, our method correctly registers the input view surfaces
with better registration than alternative methods, and successfully
generates a watertight color mesh.

5.4 Running times

We compare the running times of the proposed method with the
`2-norm regularized method, SNR method, and group sparsity
method on Crane dataset. We downsample the meshes into smaller
meshes with 1K to 10K vertices. The number of NICP registration
iterations for each method is set as 20. The comparison results
are shown in Table 5. Our method has similar time complexity as
SNR.

Table 5
Comparison on running times

Num. vertices 1000 2000 5000 10000

`2-norm 1.23s 3.51s 12.88s 29.78s

SNR 8.05s 17.36s 52.48s 119.06s

Group sparsity 7.39s 24.83s 59.96s 126.58s

Ours 7.17s 22.13s 55.68s 122.85s

6 CONCLUSIONS

This paper proposes a non-rigid registration method with
reweighted sparse position and transformation constraints. We
formulate the energy function with position and transformation
sparsity on both the data term and the smoothness term, and define
the smoothness constraint using local rigidity. The double sparsity
based non-rigid registration model is equipped with a reweighting
scheme, and solved by the alternating direction method under
the augmented Lagrangian multiplier framework which has exact
solutions and guaranteed convergence. Experimental results on
both public datasets and real scans show that our method provides
significantly improved results over alternative methods, especially
for more challenging cases, and is more robust to noise and
outliers.
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APPENDIX A
DERIVATION OF THE ADMM ALGORITHM

Under the ADMM framework, the augmented Lagrangian function
(13) is optimized with respect to the variables alternately, yielding
the following subproblems to optimize:
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The C-subproblem has the following closed solution:
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shrink
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1

µ
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)
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(16)

where shrink(·,·) is the shrinkage function applied on the matrix
element-wise:

shrink (x, τ) = sign(x) max(|x| − τ, 0). (17)

The A-subproblem is solved in a similar way:

A(k+1) = shrink

(
WSBX(k) − 1

µ
(k)
2

Y
(k)
2 ,

α

µ
(k)
2

)
. (18)

The Ri-subproblem can be explicitly solved using Procrustes
projection:

(U,D,V>) = svd(SXk
i ),

Rk+1
i = UV>,

(19)

where svd(·) is the singular value decomposition. If the obtained
matrix has a negative determinant, take Ri with the opposite sign
to turn the matrix into a rotation matrix. This step is similar to [33]
for minimizing as-rigid-as-possible energy, although our overall
alternating optimization is different and more complicated.

Being quadratic, the X-subproblem can be readily solved by
using the first-order optimality condition:(
µ
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1 V>W>

D WDV + µ
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(20)

However, the straightforward matrix inversion in solving (20) is
inefficient or even practically impossible for large-scale problems,
e.g., registration of tens of thousands of points. This can be
relieved by using the LDL decomposition:

(L,D) =

ldl

(
µ
(k)
1 V>W>

D WDV + µ
(k)
2 B>W>

S WSB + β
N∑
i=1

STS

)
,

(21)

where L and D are the lower triangular matrix and the diagonal
matrix of the LDL decomposition. Then, the linear equations in
(20) is solved by solving the following much easier linear systems:

LQ = V>W>
D
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DZ = Q,

L>X = Z.
(22)

REFERENCES

[1] B. Allen, B. Curless, and Z. Popović. Articulated body deformation from
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